|   | 
Details
   web
Records
Author Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N.
Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
Year 2016 Publication Science of The Total Environment Abbreviated Journal
Volume 566-567 Issue Pages 398-415
Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites
Abstract (down) The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181
Permanent link to this record
 

 
Author El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J.
Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
Year 2007 Publication Environmental Geology Abbreviated Journal
Volume 54 Issue 3 Pages 491-503
Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg
Abstract (down) The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44
Permanent link to this record
 

 
Author Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q.
Title Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China Type Journal Article
Year 2014 Publication Journal of Hydrology Abbreviated Journal
Volume 508 Issue Pages 12-27
Keywords Laizhou Bay, Coastal aquifers, Groundwater hydrochemistry, Stable isotopes, Saltwater intrusion
Abstract (down) Summary A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for salt production in the north. Groundwater is characterized by hydrochemical zonation of water types (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. Examination of the groundwater stable isotope δ18O and δ2H values (between −9.5‰ and −3.0‰ and −75‰ and −40‰, respectively) and chloride contents (∼2 to 1000meq/L) of the groundwater indicate that the saline end-member is brine rather than seawater, and most groundwater samples plot on mixing trajectories between fresh groundwater (δ18O of between −6.0‰ and −9.0‰; Cl<5meq/L) and sampled brines (δ18O of approximately −3.0‰ and Cl>1000meq/L). Locally elevated Na/Cl ratios likely result from ion exchange in areas of long-term freshening. The brines, with radiocarbon activities of ∼30 to 60 pMC likely formed during the Holocene as a result of the sequence of transgression-regression and evaporation; while deep, fresh groundwater with depleted stable isotopic values (δ18O=−9.7‰ and δ2H=−71‰) and low radiocarbon activity (<20 pMC) was probably recharged during a cooler period in the late Pleistocene, as is common throughout northern China. An increase in the salinity and tritium concentration in some shallow groundwater sampled in the 1990s and re-sampled here indicates that intensive brine extraction has locally resulted in rapid mixing of young, fresh groundwater and saline brine. The δ18O and δ2H values of brines (∼−3.0‰ and −35‰) are much lower than that of modern seawater, which could be explained by 1) mixing of original (δ18O enriched) brine that was more saline than presently observed, with fresh groundwater recharged by precipitation and/or 2) dilution of the palaeo-seawater with continental runoff prior to and/or during brine formation. The first mechanism is supported by relatively high Br/Cl molar ratios (1.7×10−3–2.5×10−3) in brine water compared with ∼1.5×10−3 in seawater, which could indicate that the brines originally reached halite saturation and were subsequently diluted with fresher groundwater over the long-term. Decreasing 14C activities with increasing sampling depth and increasing proximity to the coastline indicate that the south coastal aquifer in Laizhou Bay is dominated by regional lateral flow, on millennial timescales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Han201412 Serial 174
Permanent link to this record
 

 
Author Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L.
Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 650 Issue Pt 1 Pages 878-890
Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay
Abstract (down) In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.
Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30308862 Approved no
Call Number THL @ christoph.kuells @ Serial 184
Permanent link to this record
 

 
Author Sarker, M.M.R.; Van Camp, M.; Islam, M.; Ahmed, N.; Walraevens, K.
Title Hydrochemistry in coastal aquifer of southwest Bangladesh : origin of salinity Type Journal Article
Year 2018 Publication Environmental Earth Sciences Abbreviated Journal
Volume 77 Issue 2 Pages 20
Keywords Hydrochemistry,Stable isotope,Seawater intrusion,Coastal aquifer,Bangladesh,DAR-ES-SALAAM,SEAWATER INTRUSION,DELTA PLAIN,GROUNDWATER,DRINKING,TANZANIA,DROUGHT,COMPLEX
Abstract (down) In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200-300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1866-6280 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Sarker2018 Serial 194
Permanent link to this record