toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hanshaw, B.B.; Back, W. url  doi
openurl 
  Title Deciphering hydrological systems by means of geochemical processes Type Journal Article
  Year 1985 Publication Hydrological Sciences Journal Abbreviated Journal  
  Volume 30 Issue 2 Pages 257-271  
  Keywords  
  Abstract (up) The distribution of permeability and chemical character of groundwater in carbonate aquifers is significantly influenced by the many diagenetic processes

and reactions that occur in the early development of these rocks. Many of these diagenetic processes occur in the transition zone formed as the carbonate sediments emerge from the marine environment and become fresh-water aquifers. Analyses of trace elements and isotopes

indicate that calcite cements and dolomites are formed in this groundwater mixing zone. Reverse reactions such as mineral dissolution and dedolomitization occur in carbonate aquifer systems. The geochemical reactivity of the fresh-water/salt-water mixing zone results from the nonlinearity of geochemical parameters as a function of ionic strength and causes extensive dissolution in coastal carbonate rocks. Interpretation of geochemical reactions and isotopic composition of groundwater provides a method to determine hydrological parameters

such as porosity, hydraulic conductivity, and groundwater flow rates. This geochemical method is largely independent of the more conventional approach of determining these parameters by an evaluation of physical properties of aquifer systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-6667 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hanshaw1985 Serial 25  
Permanent link to this record
 

 
Author Park, H.; Schlesinger, W. doi  openurl
  Title Global biochemical cycle of boron Type Journal Article
  Year 2002 Publication Global Biogeochemical Cycles Abbreviated Journal  
  Volume 16 Issue Pages 1072  
  Keywords  
  Abstract (up) The global Boron (B) cycle is primarily driven by a large flux (1.44 Tg B/yr) through the atmosphere derived from seasalt aerosols. Other significant sources of atmospheric boron include emissions during the combustion of biomass (0.26-0.43 Tg B/yr) and coal, which adds 0.20 Tg B/yr as an anthropogenic contribution. These known inputs to the atmosphere cannot account for the boron removed from the atmosphere during rainfall (3.0 Tg B/yr) and estimated dry deposition (1.3-2.7 Tg B/yr). In addition to atmospheric deposition, rock weathering is a source of boron (0.19 Tg B/yr) for terrestrial ecosystems, and humans mine about 0.31 Tg B/yr from the Earth's crust. More than 4.8 Tg B/yr circulates in the biogeochemical cycle of land plants, and about 0.53-0.63 Tg B/yr is carried from land to sea by rivers. The biogeochemical cycle of boron in the sea includes 4.4 Tg B/yr circulating in the marine biosphere, and an annual loss of 0.47 Tg B/yr to the oceanic crust via a variety of sedimentary processes that collectively remove only a small fraction of the total annual inputs to the oceans. Thus with our current understanding of the global biogeochemistry of B, the atmospheric budget shows outputs > inputs, while the marine compartments show inputs > outputs. Despite these uncertainties, it is clear that the human perturbation of the global B cycle has more than doubled the mobilization of B from the crust and contributes significantly to the B transport in rivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ article Serial 94  
Permanent link to this record
 

 
Author Faye, S.; Maloszewski, P.; Stichler, W.; Trimborn, P.; Faye, S. C.; Gaye, C. url  openurl
  Title Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators Type Journal Article
  Year 2005 Publication Science of The Total Environment Abbreviated Journal  
  Volume 343 Issue 1 Pages 243-259  
  Keywords Minor elements, Hydrochemistry, Sorption/desorption, Mixing model, Salinization  
  Abstract (up) The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7–650 μg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Faye2005243 Serial 173  
Permanent link to this record
 

 
Author Daniele, L.; Vallejos, Á.; Corbella, M.; Molina, L.; Pulido-Bosch, A. url  doi
openurl 
  Title Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain) Type Journal Article
  Year 2013 Publication Applied Geochemistry Abbreviated Journal  
  Volume 29 Issue Pages 43-54  
  Keywords  
  Abstract (up) The hydrogeological unit of Aguadulce (Campo de Dalías aquifers, SE Spain) has a complex geometry. This fact, together with a continuous rise in water demand due to intensive agriculture and tourism create problems for groundwater quantity and quality. In this paper classic geochemical tools managed by means of GIS software and geochemical simulations are combined to delineate, identify and locate the possible physicochemical processes acting in the Aguadulce groundwater. Two main aquifers can be distinguished: the carbonate or lower aquifer of Triassic age, and the calcodetritic or upper aquifer of Plio-Quaternary age. Groundwaters from the latter are more saline and, assuming all chlorinity originates from seawater intrusion, the seawater contribution to their composition would be up to 7%. Nevertheless the carbonate aquifer appears not to be homogeneous: it is compartmentalised into 4 zones where different processes explain the different groundwaters compositions. Zone 4 samples (E margin of the carbonate aquifer) resemble those of the Plio-Quaternary aquifer, where calcite precipitation, dolomite and gypsum dissolution and some cation exchange (water–rock interaction) together with seawater–freshwater mixing occur. In contrast, water–rock interaction predominates in zones 1 and 3 of the carbonate aquifer. Moreover, zone 2 samples, located between zones 1 and 3, are explained by water–rock interaction in addition to mixing with Plio-Quaternary aquifer waters. The combination of geochemical simulations with GIS and hydrogeochemical analyses has proven to be effective in identifying and locating the different physicochemical processes in the aquifer areas, thus improving understanding of hydrogeochemistry in complex aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Daniele2013 Serial 19  
Permanent link to this record
 

 
Author Darwish, T.; Atallah, T.; Francis, R.; Saab, C.; Jomaa, I.; Shaaban, A.; Sakka, H.; Zdruli, P. url  openurl
  Title Observations on soil and groundwater contamination with nitrate: A case study from Lebanon-East Mediterranean Type Journal Article
  Year 2011 Publication Agricultural Water Management Abbreviated Journal  
  Volume 99 Issue 1 Pages 74-84  
  Keywords  
  Abstract (up) The impact of agricultural practices on soil–groundwater quality in the sub-humid Bekaa plain of Lebanon-East Mediterranean was monitored in four fields (F) between July 2007 and July 2009. These were occupied by continuous mint (F1), summer potato/wheat/potato (F2), lettuce/lettuce/potato/wheat/summer potato (F3) and table grapes (F4). N input calculated on a two-year basis, was in the following ascending order F4, F2, F3 and F1. Soil samples, analyzed down to 200 cm depth, showed high nitrate and chloride concentrations at the end of the 2007 and 2008 seasons. Soil chloride and nitrate peaks recorded in October 2007 and 2008 disappeared below 200 cm overwinter. The calculated N biannual discharge ranged from 130 (F4), to 516 (F2), to 778 (F1), to 879 kg ha−1 (F3). Groundwater quality was studied in 21 wells distributed along a sequence stretching from the Litani River to the eastern water dividing line. Based on the nitrate concentrations, the well located at the top of the water dividing line was the only one suitable for drinking purposes. Eight wells were mildly contaminated, therefore suitable for irrigation purposes except for sensitive crops. Twelve wells, positioned in the plain, showed a nitrate level exceeding 200 mg L−1. Protecting the soil and groundwater quality is a top priority to maintain the ecological and agricultural functions of water.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Darwish2011 Serial 48  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: