|   | 
Details
   web
Records
Author (up) Kim, Y.; Lee, K.-S.; Koh, D.-C.; Lee, D.-H.; Lee, S.-G.; Park, W.-B.; Koh, G.-W.; Woo, N.-C.
Title Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea Type Journal Article
Year 2003 Publication Journal of Hydrology Abbreviated Journal
Volume 270 Issue 3 Pages 282-294
Keywords Jeju volcanic island, Coastal aquifer, Groundwater salinization, Hydrogeochemistry, Environmental isotopes, Mixing process
Abstract In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kim2003282 Serial 172
Permanent link to this record
 

 
Author (up) Liu, Y.; Jin, M.; Wang, J.
Title Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin Type Journal Article
Year 2018 Publication Hydrological Processes Abbreviated Journal
Volume 32 Issue 20 Pages 3108-3127
Keywords deuterium excess, groundwater salinization, Northwest China, Manas River basin, stable isotopes
Abstract Abstract In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl− concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl− concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo-water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ doi:10.1002/hyp.13243 Serial 178
Permanent link to this record
 

 
Author (up) Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N.
Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
Year 2016 Publication Science of The Total Environment Abbreviated Journal
Volume 566-567 Issue Pages 398-415
Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites
Abstract The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181
Permanent link to this record
 

 
Author (up) Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L.
Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 650 Issue Pt 1 Pages 878-890
Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay
Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.
Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30308862 Approved no
Call Number THL @ christoph.kuells @ Serial 184
Permanent link to this record