|   | 
Details
   web
Records
Author (down) Panagopoulos, G.
Title Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece Type Journal Article
Year 2009 Publication Environmental Geology Abbreviated Journal
Volume 58 Issue 5 Pages 1067-1082
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Greece Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Panagopoulos2009 Serial 36
Permanent link to this record
 

 
Author (down) Pacheco, F.A.L.; Szocs, T.
Title “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary Type Journal Article
Year 2006 Publication Applied Geochemistry Abbreviated Journal
Volume 21 Issue 4 Pages 614-631
Keywords
Abstract In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite\textgreatercalcite\textgreaterplagioclase\textgreaterK-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Pacheco2006 Serial 35
Permanent link to this record
 

 
Author (down) Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahrens, J.; Mori, C.; Neuholz, R.Ã.©; Schnetger, B.; Beck, M.
Title DSi as a Tracer for Submarine Groundwater Discharge Type Journal Article
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal
Volume 6 Issue Pages 563
Keywords
Abstract Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Oehler2019 Serial 192
Permanent link to this record
 

 
Author (down) Nogueira, G.; Stigter, T.Y.; Zhou, Y.; Mussa, F.; Juizo, D.
Title Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal
Volume 661 Issue Pages 723-736
Keywords
Abstract In this study hydrochemical, isotopic and multivariate statistical tools are combined with a recharge analysis and existing geophysical data to improve understanding of major factors controlling freshwater occurrence and the origins of high salinities in the multi-layered coastal aquifer system of the Great Maputo area in Mozambique. Access to freshwater in this semi-arid area is limited by an inefficient public supply network, scarce surface waters, long droughts and an increasing population growth. Groundwater has a large potential to enhance water security, but its exploitation is threatened by both coastal and inland salinization mechanisms that are poorly understood. A GIS approach is utilized to classify potential recharge zones based on hydrogeological properties and land use/cover, whereas potential recharge rates are estimated through a root zone water balance method. In combination with water stable isotope data results reveal that extreme rainfall events provide the most relevant contributions to recharge, and interception and evaporation play an important role in the low recharge areas. Hierarchical clustering of hydrochemical and isotopic data allows the classification of six water groups, varying from fresh to brackish/salt waters. Corresponding scatter plots and PHREEQC modelling show evaporation and mixing with seawater (up to 5%) as major processes affecting salinity in the area. The co-occurrence of high alkalinity and Cl concentrations, in combination with piezometric and geo-electrical data, suggests that: 1) inland brackish/salt groundwater is caused by mixing with seawater trapped within clay layers; and 2) brackish/salt surface waters result from seepage of brackish groundwater into rivers and wetlands, followed by evaporation, hence increasing salinity and δ18O values. Mixing with small fractions of trapped seawater as main salinity source, rather than halite dissolution, is further corroborated by Br/Cl ratios of brackish/salt water samples near the ocean ratio. Cation exchange upon salinization is mainly observed in the semi-confined aquifer, while freshening takes place in the phreatic aquifer, particularly in areas presenting high recharge rates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Nogueira2019 Serial 34
Permanent link to this record
 

 
Author (down) Nisi, B.; Raco B.; Dotsika, E.
Title Groundwater Contamination Studies by Environmental Isotopes: A review Type Book Chapter
Year 2014 Publication Environment, Energy and Climate Change I: Environmental Chemistry of Pollutants and Wastes Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor E. Jimenez
Language en Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 186
Permanent link to this record