|   | 
Details
   web
Records
Author Gat, J.R.
Title The relationship between surface and subsurface waters: water quality aspects in areas of low precipitation / Rapport entre les eaux de surface et les eaux souterraines: aspects des propriétés caractéristiques de l’eau dans les zones à précipitation faible Type Journal Article
Year 1980 Publication Hydrological Sciences Bulletin Abbreviated Journal
Volume 25 Issue 3 Pages 257-267
Keywords
Abstract In the temperate and semiarid environment the salinity of both surface and subsurface(meteoric) waters is dominated by the weathering products of soil and aquifer minerals, since even surface waters have a history of subsurface flow. In the desert environment, in contrast, surface flows are more superficial and their chemistry dominated by the aeolian salinity. This has both a marine input and

a contribution from recycled salinity from surface accumulation of evaporitic minerals. Both these sources have chloride (and to a lesser extent sulphate) as the dominant anion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0303-6936 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Gat1980 Serial 22
Permanent link to this record
 

 
Author Giménez-Forcada, E.
Title Space/time development of seawater intrusion: A study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies Type Journal Article
Year 2014 Publication Journal of Hydrology Abbreviated Journal
Volume 517 Issue Pages 617-627
Keywords
Abstract A new method has been developed to recognize and understand the temporal and spatial evolution of seawater intrusion in a coastal alluvial aquifer. The study takes into account that seawater intrusion is a dynamic process, and that seasonal and inter-annual variations in the balance of the aquifer cause changes in groundwater chemistry. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to seawater intrusion during different sampling periods. This methodology has been applied to the pilot area of the Vinaroz Plain, on the Mediterranean coast of Spain. The results appear to be very successful for differentiating variations through time in the salinization processes caused by seawater intrusion into the aquifer, distinguishing the phase of seawater intrusion from the phase of recovery, and their respective evolutions. The method shows that hydrochemical variations can be read in terms of the pattern of seawater intrusion, groundwater quality status, aquifer behaviour and hydrodynamic conditions. This leads to a better general understanding of the aquifers and a potential for improvement in the way they are managed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Gimenez-Forcada2014 Serial 23
Permanent link to this record
 

 
Author Gopinath, S.; Srinivasamoorthy, K.; Saravanan, K.; Prakash, R.
Title Tracing groundwater salinization using geochemical and isotopic signature in Southeastern coastal Tamilnadu, India Type Journal Article
Year 2019 Publication Chemosphere Abbreviated Journal
Volume 236 Issue Pages 124305
Keywords Coastal groundwater, Hydrochemistry, Isotopes, Thermodynamics, Statistical analysis
Abstract Attempt has been made to discriminate groundwater salinity causes along the east coast of India. A total of 122 groundwater samples (61/season) were collected for two diverse seasons (Pre Monsoon and Post Monsoon) and analyzed for physical and chemical components along with stable isotopes. The Piper diagram proposes samples along the coast predisposed by saltwater incursion. Ionic ratio plots recommend groundwater discriminatory by changing geochemical signatures. The statistical correlation suggests impact of saltwater incursion, anthropogenic and rock water interaction as sources for dissolved constituents in groundwater. The thermodynamic stability plot suggests higher silicate dissolution, weathering and ion exchange prompting water chemistry nevertheless of seasons. The δ 18O and δ 2H increases towards the sea suggesting enrichment attributed to the sea water influence and rainfall influences along the southwestern parts of the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Gopinath2019124305 Serial 176
Permanent link to this record
 

 
Author Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q.
Title Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China Type Journal Article
Year 2014 Publication Journal of Hydrology Abbreviated Journal
Volume 508 Issue Pages 12-27
Keywords Laizhou Bay, Coastal aquifers, Groundwater hydrochemistry, Stable isotopes, Saltwater intrusion
Abstract Summary A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for salt production in the north. Groundwater is characterized by hydrochemical zonation of water types (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. Examination of the groundwater stable isotope δ18O and δ2H values (between −9.5‰ and −3.0‰ and −75‰ and −40‰, respectively) and chloride contents (∼2 to 1000meq/L) of the groundwater indicate that the saline end-member is brine rather than seawater, and most groundwater samples plot on mixing trajectories between fresh groundwater (δ18O of between −6.0‰ and −9.0‰; Cl<5meq/L) and sampled brines (δ18O of approximately −3.0‰ and Cl>1000meq/L). Locally elevated Na/Cl ratios likely result from ion exchange in areas of long-term freshening. The brines, with radiocarbon activities of ∼30 to 60 pMC likely formed during the Holocene as a result of the sequence of transgression-regression and evaporation; while deep, fresh groundwater with depleted stable isotopic values (δ18O=−9.7‰ and δ2H=−71‰) and low radiocarbon activity (<20 pMC) was probably recharged during a cooler period in the late Pleistocene, as is common throughout northern China. An increase in the salinity and tritium concentration in some shallow groundwater sampled in the 1990s and re-sampled here indicates that intensive brine extraction has locally resulted in rapid mixing of young, fresh groundwater and saline brine. The δ18O and δ2H values of brines (∼−3.0‰ and −35‰) are much lower than that of modern seawater, which could be explained by 1) mixing of original (δ18O enriched) brine that was more saline than presently observed, with fresh groundwater recharged by precipitation and/or 2) dilution of the palaeo-seawater with continental runoff prior to and/or during brine formation. The first mechanism is supported by relatively high Br/Cl molar ratios (1.7×10−3–2.5×10−3) in brine water compared with ∼1.5×10−3 in seawater, which could indicate that the brines originally reached halite saturation and were subsequently diluted with fresher groundwater over the long-term. Decreasing 14C activities with increasing sampling depth and increasing proximity to the coastline indicate that the south coastal aquifer in Laizhou Bay is dominated by regional lateral flow, on millennial timescales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Han201412 Serial 174
Permanent link to this record
 

 
Author Han, D.; Post, V.E.A.; Song, X.
Title Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers Type Journal Article
Year 2015 Publication Journal of Hydrology Abbreviated Journal
Volume 531 Issue Pages 1067-1080
Keywords
Abstract Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H–δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl− concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3− concentrations (\textgreater39mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical models.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Han2015 Serial 24
Permanent link to this record