|   | 
Details
   web
Records
Author Zhao, Q.; Su, X.; Gan, Y.
Title Hydrogeochemical and isotopic study of the origins of groundwater salinization in the deep confined aquifer of northern Yangtze River Type Journal Article
Year 2019 Publication E3S Web Conf. Abbreviated Journal
Volume 98 Issue Pages 07034
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) THL @ christoph.kuells @ Zhao2019 Serial 180
Permanent link to this record
 

 
Author Zhao, Q.; Su, X.; Kang, B.; Zhang, Y.; Wu, X.; Liu, M.
Title A hydrogeochemistry and multi-isotope (Sr, O, H, and C) study of groundwater salinity origin and hydrogeochemcial processes in the shallow confined aquifer of northern Yangtze River downstream coastal plain, China Type Journal Article
Year 2017 Publication Applied Geochemistry Abbreviated Journal
Volume 86 Issue Pages 49-58
Keywords Coastal confined groundwater, Salinity, Hydrogeochemcial processes, Multiple environmental tracers
Abstract Economically developed coastal areas have a high water demand, and their groundwater resources can be threatened by salinization. Many methods and tracers have been used to discriminate the source of salinization because a single method does not yield reliable results. In this paper, the shallow confined coastal plain aquifer, north of the downstream Yangtze River in China, is used as a case study to investigate the origin of the salinity and the relevant geochemical processes for this aquifer. Multiple environmental tracers of major ions, minor ions (Br−, I−), and isotopes (18O, 2H, 13C, 87Sr, 3H, 14C) were used so as to provide reliable conclusions. The TDS distribution of the aquifer has an increasing trend, from below 500 mg/L in the inland areas to more than 20,000 mg/L around the southeast coastline. The water chemical type evolves from HCO3-Ca to Cl-Na as the TDS increases. The results suggest that the groundwater salinity is influenced by seawater intrusion. The seawater proportions in the groundwater samples range from 0.07% to 94.41% and show the same spatial distribution pattern as TDS. The 3H and 14C values show that the highest salinity was mainly caused by a seawater transgression around 6000a B.P. The aquifer is also affected by other hydrogeochemical processes: base exchange has enriched Ca2+ and depleted K+ and Na+, sulfate reduction has reduced the concentration of SO42− and enriched HCO3−, and iodine-rich organic matter decomposition has enriched the concentration of I−. The iodine enrichment also suggests paleo-seawater intrusion. In addition, the precipitation of carbonate minerals has decreased the concentration of Ca2+, Mg2+, and HCO3−, albeit to a limited extent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) THL @ christoph.kuells @ Zhao201749 Serial 182
Permanent link to this record
 

 
Author Yıldırım, Ü.; Aschonitis, V.; Balacco, G.; Daras, P.; Doulgeris, C.; Fidelibus, M.D.; Gaubi, E.; Gueddari, M.; Güler, C.; Hamzaoui, F.; others
Title MEDSAL Project-Salinization of critical groundwater reserves in coastal Mediterranean areas: Identification, risk assessment and sustainable management with the use of integrated modelling and smart ICT tools Type Journal Article
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher EGU General Assembly 2020 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) THL @ christoph.kuells @ yildirim2020medsal Serial 207
Permanent link to this record
 

 
Author Wigley, T.M.L.; Plummer, L.N.
Title Mixing of carbonate waters Type Journal Article
Year 1976 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 40 Issue 9 Pages 989-995
Keywords
Abstract When mineral solutions of different compositions are mixed, the molalities and activities of individual ions in the mixture are often non-linear functions of their end-member values. This non-linearity is particularly significant in determining mineral saturation levels. Mixtures of saturated solutions may be either undersaturated or supersaturated depending on the end-member compositions and the physical conditions in which end-members and their mixtures exist. In carbonate solutions important non-linear effects occur due to redistribution of carbonate species. In extreme cases this causes mixture pH to be below both the end-member pH values. A simple but precise computer program (WATMIX) has been developed for calculating mixture composition for closed and open system mixing of arbitrary end-members. A number of mixing examples are considered which allow one to isolate three important processes leading to non-linear behaviour: the algebraic effect, the δPCO2 effect, and the ionic strength effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) THL @ christoph.kuells @ Wigley1976 Serial 40
Permanent link to this record
 

 
Author Vengosh, A.; Rosenthal, E.
Title Saline groundwater in Israel: its bearing on the water crisis in the country Type Journal Article
Year 1994 Publication Journal of Hydrology Abbreviated Journal
Volume 156 Issue 1 Pages 389-430
Keywords
Abstract One of the major causes for the deterioration of water quality bearing heavily on the water crisis in Israel is the ongoing contamination of its water resources by saline water bodies. The present paper reviews the geochemical processes forming saline water, lists and explains certain chemical and isotopic parameters which enable understanding these processes and describes the saline groundwater bodies and various salinization phenomena occurring in the country’s various aquifers. Deterioration of groundwater in Israel is caused by numerous natural processes such as encroachment of sea water, migration of connate, highly pressurized brines penetrating into fresh groundwater, by subsurface dissolution of soluble salts originating in surrounding country rocks and by water-rock interaction. In addition to sea water, two saline water bodies were identified as the main factors causing salinization of fresh groundwater: (a) Ca-chloride brines encountered in the Jordan-Dead Sea Rift Valley, in various parts of the Negev and of the Coastal Plain, and (b) Na-chloride saline water identified in the subsurface of the Negev and in the southern part of the Coastal Plain. Intensive exploitation of groundwater in Israel has disturbed the natural equilibrium which prevailed between fresh and saline water. The newly established groundwater flow regimes have facilitated the migration of saline water bodies, their participation in the active hydrological cycle and the progressive contamination of fresh groundwater. These processes which were not anticipated by planners and water resources managers emphasize that large-scale groundwater exploitation was undertaken without giving sufficient consideration to the occurrence and subsurface migration of saline water and brines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) THL @ christoph.kuells @ Vengosh1994 Serial 39
Permanent link to this record