|   | 
Details
   web
Records
Author Bahir, M.; Ouhamdouch, S.; Carreira, P.M.
Title Geochemical and isotopic approach to decrypt the groundwater salinization origin of coastal aquifers from semi-arid areas (Essaouira basin, Western Morocco) Type Journal Article
Year 2018 Publication Environmental Earth Sciences Abbreviated Journal
Volume 77 Issue 13 Pages 485
Keywords
Abstract In arid and semi-arid areas, the groundwater is the main source of water supply and agricultural activity. Overexploitation of coastal aquifers and pollution vulnerability are among the main problems related to groundwater resources assessment and management in these zones. In fact, in the last decades, these resources have been threatened by a degradation of their quality and quantity that furthers natural and anthropic effects, such as climate change, seawater intrusion and overexploitation. However, the protection and management of these resources requires knowledge of the origin of their mineralization. In this study, the Essaouira basin is selected as a typical example. Stable isotopes (18O and 2H) together with geochemical data were used to identify the groundwater salinization origin in the coastal aquifers of the Essaouira basin. The results of both the approaches show that the groundwater mineralization is due to: (1) the dissolution of salt minerals, (2) the ion exchange phenomena, (3) seawater intrusion, and (4) sulphate reduction. Also, the recharge is supported by fast infiltration of oceanic precipitation without significant evaporation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1866-6299 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Bahir2018 Serial 177
Permanent link to this record
 

 
Author Liu, Y.; Jin, M.; Wang, J.
Title Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin Type Journal Article
Year 2018 Publication Hydrological Processes Abbreviated Journal
Volume 32 Issue 20 Pages 3108-3127
Keywords deuterium excess, groundwater salinization, Northwest China, Manas River basin, stable isotopes
Abstract Abstract In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl− concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl− concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo-water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ doi:10.1002/hyp.13243 Serial 178
Permanent link to this record
 

 
Author Han, D.; Currell, M.J.
Title Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence Type Journal Article
Year 2018 Publication Hydrology and Earth System Sciences Abbreviated Journal
Volume 22 Issue 6 Pages 3473-3491
Keywords Isotopes, China, multiple salinization
Abstract Groundwater is an important water resource for agricultural irrigation and urban and industrial utilization in the coastal regions of northern China. In the past 5 decades, coastal groundwater salinization in the Yang–Dai river plain has become increasingly serious under the influence of anthropogenic activities and climatic change. It is pivotal for the scientific management of coastal water resources to accurately understand groundwater salinization processes and their causative factors. Hydrochemical (major ion and trace element) and stable isotopic (δ18O and δ2H) analysis of different water bodies (surface water, groundwater, geothermal water and seawater) were conducted to improve understanding of groundwater salinization processes in the plain's Quaternary aquifer. Saltwater intrusion due to intensive groundwater pumping is a major process, either by vertical infiltration along riverbeds which convey saline surface water inland, and/or direct subsurface lateral inflow. Trends in salinity with depth indicate that the former may be more important than previously assumed. The proportion of seawater in groundwater is estimated to have reached up to 13 % in shallow groundwater of a local well field. End-member mixing calculations also indicate that the geothermal water with high total dissolved solids (up to 10.6 g L−1) with depleted stable isotope compositions and elevated strontium concentrations (> 10 mg L−1) also mixes locally with water in the overlying Quaternary aquifers. This is particularly evident in samples with elevated Sr ∕ Cl ratios (> 0.005 mass ratio). Deterioration of groundwater quality by salinization is also clearly exacerbated by anthropogenic pollution. Nitrate contamination via intrusion of heavily polluted marine water is evident locally (e.g., in the Zaoyuan well field); however, more widespread nitrate contamination due to other local sources such as fertilizers and/or domestic wastewater is evident on the basis of NO3 ∕ Cl ratios. This study provides an example of how multiple geochemical indicators can delineate different salinization processes and guide future water management practices in a densely populated water-stressed coastal region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ hess-22-3473-2018 Serial 81
Permanent link to this record
 

 
Author Houben, G.
Title Annotated translation of “Die Wasserversorgung einiger Nordseebäder [The water supply of some North Sea spas]” by Alexander Herzberg (1901) Type Journal Article
Year 2018 Publication Hydrogeology Journal Abbreviated Journal
Volume 26 Issue 6 Pages 1789-1799
Keywords seawater intrusion, Ghijben-Herzberg
Abstract The publication “The water supply of some North Sea spas” by Alexander Herzberg in 1901 is a cornerstone of coastal groundwater research. It was fundamental to the development of the Ghijben-Herzberg principle, which describes the hydrostatic equilibrium between fresh and saline groundwater. Due to its age and the language barrier, the paper is often cited but probably rarely read. Therefore, the original paper has been translated from German into English, accompanied by an introduction and notes explaining the historical context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language de Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-0157 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ Houben2018 Serial 88
Permanent link to this record
 

 
Author Post, V.E.A.
Title Annotated translation of “Nota in verband met de voorgenomen putboring nabij Amsterdam [Note concerning the intended well drilling near Amsterdam]” by J. Drabbe and W. Badon Ghijben (1889) Type Journal Article
Year 2018 Publication Hydrogeology Journal Abbreviated Journal
Volume 26 Issue 6 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-2174 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) THL @ christoph.kuells @ osti_22780850 Serial 90
Permanent link to this record