toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khaska, M.; Salle], C. [L.G.L.; Lancelot, J.; team, A.S.T.E.R.; Mohamad, A.; Verdoux, P.; Noret, A.; Simler, R. url  openurl
  Title Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France) Type Journal Article
  Year 2013 Publication Applied Geochemistry Abbreviated Journal  
  Volume 37 Issue Pages 212-227  
  Keywords  
  Abstract In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl− concentrations. Average and maximum Cl− concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85mmol/L, respectively). Group A includes spring waters with Cl− concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl− concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl− concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater. Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively. With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ Khaska2013212 Serial 84  
Permanent link to this record
 

 
Author Kim, Y.; Lee, K.-S.; Koh, D.-C.; Lee, D.-H.; Lee, S.-G.; Park, W.-B.; Koh, G.-W.; Woo, N.-C. url  openurl
  Title Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea Type Journal Article
  Year 2003 Publication Journal of Hydrology Abbreviated Journal  
  Volume 270 Issue 3 Pages 282-294  
  Keywords Jeju volcanic island, Coastal aquifer, Groundwater salinization, Hydrogeochemistry, Environmental isotopes, Mixing process  
  Abstract In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ Kim2003282 Serial 172  
Permanent link to this record
 

 
Author Löhnert, E.P.; Sonntag, C. openurl 
  Title Grundwasserversalzungen im Raum Hamburg im Licht neuer Isotopendaten Type Journal Article
  Year 1981 Publication Zeitschrift der Deutschen Geologischen Gesellschaft Abbreviated Journal  
  Volume 132 Issue Pages 559-574  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Schweizerbart Science Publishers Place of Publication Stuttgart, Germany Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ Loehhnert1981 Serial 185  
Permanent link to this record
 

 
Author Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahrens, J.; Mori, C.; Neuholz, R.Ã.©; Schnetger, B.; Beck, M. url  doi
openurl 
  Title DSi as a Tracer for Submarine Groundwater Discharge Type Journal Article
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 6 Issue Pages 563  
  Keywords  
  Abstract Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ Oehler2019 Serial 192  
Permanent link to this record
 

 
Author Post, V.E.A. doi  openurl
  Title Annotated translation of “Nota in verband met de voorgenomen putboring nabij Amsterdam [Note concerning the intended well drilling near Amsterdam]” by J. Drabbe and W. Badon Ghijben (1889) Type Journal Article
  Year 2018 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 26 Issue 6 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-2174 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ osti_22780850 Serial 90  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: