toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rina, K.; Datta, P.S.; Singh, C.K.; Mukherjee, S. url  openurl
  Title Isotopes and ion chemistry to identify salinization of coastal aquifers of Sabarmati River Basin Type Journal Article
  Year 2013 Publication Abbreviated Journal Current Science  
  Volume 104 Issue 3 Pages 335-344  
  Keywords  
  Abstract The lower reaches of the Sabarmati River Basin in Gujarat have intense agricultural and industrial activities and this part is affected by problems of groundwater salinity. Here we attempt to assess the processes governing the causes of groundwater salinity in the coastal alluvial aquifer, employing δ18O and δD isotopes in integration with ionic ratio. The different hydrochemical facies such Na–Mg–HCO3–Cl, Na–Cl–SO4, Na–Mg–Cl–HCO3–SO4 and Na–Cl of groundwater show the occurrence of complex geochemical phenomenon in the study area. Ionic ratio (such as Mg2+/Ca2+, Na+/Cl−, SO24/Cl-, K+/Cl−) and isotopic composition (δ18O and δD) of groundwater indicate that while in coastal areas seawater intrusion is taking place, in inland areas various anthropogenic activities and overexploitation have induced salinity in groundwater. Over-pumping of groundwater has also induced lateral intermixing of highly saline water in the vicinity of coastal areas with relatively fresh/low saline groundwater along specific flow pathways.  
  Address  
  Corporate Author Thesis  
  Publisher Current Science Association Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-3891 ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 190  
Permanent link to this record
 

 
Author Bahir, M.; Ouhamdouch, S.; Carreira, P.M. url  openurl
  Title Isotopic and geochemical methods for studying water–rock interaction and recharge mode: application to the Cenomanian–Turonian and Plio-Quaternary aquifers of Essaouira Basin, Morocco Type Journal Article
  Year 2018 Publication Mar. Freshwater Res. Abbreviated Journal  
  Volume 69 Issue 8 Pages 1290-1300  
  Keywords geochemistry, semi-arid area, stable isotopes, water resources.  
  Abstract Study of the Cenomanian–Turonian and Plio–Quaternary aquifers of Essaouira basin (Western Morocco), based on the interpretation of geochemical (major elements) and isotopic (18O, 2H, 13C and 14C) data, has aided the understanding of the hydrodynamics of these aquifers, which is greatly affected by tectonics. Hydrochemical characteristics based on the bivariate diagrams of major ions (Cl–, SO42–, NO3–, HCO3–, Na+, Mg2+, K+ and Ca2+) and electrical conductivity and mineral saturation indices indicate that the origins of groundwater mineralisation are the result of: (1) evaporite dissolution; (2) cation exchange reactions; (3) and evaporation processes. Radiogenic isotopes (3H and 14C) have highlighted the presence of significant recent recharge in the eastern part of the basin, with groundwater moving according to the general flow path (south-east to north-west). Stable isotope data from the Essaouira basin plot along the Global Meteoric Water Line and below the Local Meteoric Water Line. This suggests that groundwater has been recharged under several different climate regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 191  
Permanent link to this record
 

 
Author Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahrens, J.; Mori, C.; Neuholz, R.Ã.©; Schnetger, B.; Beck, M. url  doi
openurl 
  Title DSi as a Tracer for Submarine Groundwater Discharge Type Journal Article
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 6 Issue Pages 563  
  Keywords  
  Abstract Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Oehler2019 Serial 192  
Permanent link to this record
 

 
Author Kloppmann, W.; Petelet-Giraud, E.; Guerrot, C.; Cary, L.; Pauwels, H. doi  openurl
  Title Extreme Boron Isotope Ratios in Groundwater Type Journal Article
  Year 2015 Publication Procedia Earth and Planetary Science Abbreviated Journal  
  Volume 13 Issue Pages  
  Keywords  
  Abstract Kloppmann, W. , Petelet-Giraud, E. , Guerrot, C. , Cary, L. , & Pauwels, H. (2015). Extreme Boron Isotope Ratios in Groundwater. Procedia Earth and Planetary Science, 13 . doi: 10.1016/j.proeps.2015.07.069  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 193  
Permanent link to this record
 

 
Author Sarker, M.M.R.; Van Camp, M.; Islam, M.; Ahmed, N.; Walraevens, K. url  doi
openurl 
  Title Hydrochemistry in coastal aquifer of southwest Bangladesh : origin of salinity Type Journal Article
  Year 2018 Publication Environmental Earth Sciences Abbreviated Journal  
  Volume 77 Issue 2 Pages 20  
  Keywords Hydrochemistry,Stable isotope,Seawater intrusion,Coastal aquifer,Bangladesh,DAR-ES-SALAAM,SEAWATER INTRUSION,DELTA PLAIN,GROUNDWATER,DRINKING,TANZANIA,DROUGHT,COMPLEX  
  Abstract In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200-300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1866-6280 ISBN Medium  
  Area Expedition Conference (down)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sarker2018 Serial 194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: