toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lu, C.; Xin, P.; Kong, J.; Li, L.; Luo, J. url  doi
openurl 
  Title Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers Type Journal Article
  Year 2016 Publication Water Resources Research Abbreviated Journal  
  Volume 52 Issue 9 Pages (down) 6989-7004  
  Keywords seawater intrusion, sloping coastal aquifer, analytical solution  
  Abstract Abstract Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Lu.etal.2016 Serial 15  
Permanent link to this record
 

 
Author Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.M.G.L.; Pauwels, H.; Chatton, E.; Franzen, Melissa; Aurouet, A.; Lasseur, E.; Picot-Colbeaux, G.; Guerrot, C.; Fléhoc, C.; Labasque, T.; Santos, Jeane Glaucia; Paiva, Anderson L.R.; Braibant, G.; Pierre, D. url  doi
openurl 
  Title Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach Type Journal Article
  Year 2015 Publication Science of the Total Environment Abbreviated Journal  
  Volume 530-531 Issue Pages (down) 411-429  
  Keywords Salinization origins; Salinization processes; Groundwater; Coastal aquifer; Strontium isotopes; Boron isotopes; Recife; Brazil  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ cary:hal-01161949 Serial 85  
Permanent link to this record
 

 
Author Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. url  doi
openurl 
  Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
  Year 2016 Publication Science of The Total Environment Abbreviated Journal  
  Volume 566-567 Issue Pages (down) 398-415  
  Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites  
  Abstract The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181  
Permanent link to this record
 

 
Author Kim, Y.; Lee, K.-S.; Koh, D.-C.; Lee, D.-H.; Lee, S.-G.; Park, W.-B.; Koh, G.-W.; Woo, N.-C. url  openurl
  Title Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea Type Journal Article
  Year 2003 Publication Journal of Hydrology Abbreviated Journal  
  Volume 270 Issue 3 Pages (down) 282-294  
  Keywords Jeju volcanic island, Coastal aquifer, Groundwater salinization, Hydrogeochemistry, Environmental isotopes, Mixing process  
  Abstract In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kim2003282 Serial 172  
Permanent link to this record
 

 
Author Jesús Carrera, Juan J. Hidalgo, Luit J. Slooten, Enric Vázquez-Suñé url  doi
openurl 
  Title Computational and conceptual issues in the calibration of seawater intrusion models Type Journal Article
  Year 2010 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 18 Issue Pages (down) 131-145  
  Keywords Coastal aquifers; Inverse modelling; Numerical modeling  
  Abstract The inverse problem of seawater intrusion(SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities:(1) head measurements need to be complemented with density information; (2) salinity concentration data are

very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and

provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.
 
  Address J. Carrera : J. J. Hidalgo ()) : L. J. Slooten : E. Vázquez-Suñé, Spain e-mail: juan.hidalgo@upc.edu  
  Corporate Author Institute of Environmental Ass Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Jordi Girona 18, 08034 Barcelona, e-mail: juan.hidalgo@upc.edu Thesis  
  Publisher IAH Place of Publication Editor Springer  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431- 2174 (online: 1435-0157) ISBN Medium  
  Area 'Hydrogeology'; 'groundwater modelling' Expedition Conference  
  Notes Approved yes  
  Call Number MGRE @ redha.menani @ Serial 51  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: