toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. url  doi
openurl 
  Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
  Year 2016 Publication Science of The Total Environment Abbreviated Journal  
  Volume 566-567 Issue Pages (up) 398-415  
  Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites  
  Abstract The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181  
Permanent link to this record
 

 
Author Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.M.G.L.; Pauwels, H.; Chatton, E.; Franzen, Melissa; Aurouet, A.; Lasseur, E.; Picot-Colbeaux, G.; Guerrot, C.; Fléhoc, C.; Labasque, T.; Santos, Jeane Glaucia; Paiva, Anderson L.R.; Braibant, G.; Pierre, D. url  doi
openurl 
  Title Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach Type Journal Article
  Year 2015 Publication Science of the Total Environment Abbreviated Journal  
  Volume 530-531 Issue Pages (up) 411-429  
  Keywords Salinization origins; Salinization processes; Groundwater; Coastal aquifer; Strontium isotopes; Boron isotopes; Recife; Brazil  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ cary:hal-01161949 Serial 85  
Permanent link to this record
 

 
Author El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J. url  doi
openurl 
  Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
  Year 2007 Publication Environmental Geology Abbreviated Journal  
  Volume 54 Issue 3 Pages (up) 491-503  
  Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg  
  Abstract The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44  
Permanent link to this record
 

 
Author Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L. url  doi
openurl 
  Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 650 Issue Pt 1 Pages (up) 878-890  
  Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay  
  Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.  
  Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30308862 Approved no  
  Call Number THL @ christoph.kuells @ Serial 184  
Permanent link to this record
 

 
Author Siarkos, I.; Latinopoulos, P. url  doi
openurl 
  Title Modeling seawater intrusion in overexploited aquifers in the absence of sufficient data: application to the aquifer of Nea Moudania, northern Greece Type Journal Article
  Year 2016 Publication Hydrogeology Journal Abbreviated Journal Hydrogeology J.  
  Volume 24 Issue Pages (up) 2123–2141  
  Keywords Groundwater flow, Seawater intrusion, Numerical modeling, Greece, Sensitivity analysis  
  Abstract In many coastal areas, overexploitation of groundwater resources has led both to the quantitative degradation of local aquifers and the deterioration of groundwater quality due to seawater intrusion. To investigate the behavior of coastal aquifers under these conditions, numerical modeling is usually implemented; however, the proper implementation of numerical models requires a large amount of data, which are often not available due to the time-consuming and costly process of obtaining them. In the present study, the investigation of the behavior of coastal aquifers under the lack of adequate data is

attempted by developing a methodological framework consisting of a series of numerical simulations: a steady-state, a false-transient and a transient simulation. The sequence and the connection between these simulations constitute the backbone of the whole procedure aimed at adjusting the various

model parameters, as well as obtaining the initial conditions for the transient simulation. The validity of the proposed methodology is tested through evaluation of the model calibration procedure and the estimation of the simulation errors (mean error, mean absolute error, root mean square error, mean relative error) using the case of Nea Moudania basin, northern Greece. Furthermore, a sensitivity analysis is performed in order to minimize the error estimates and thus to maximize the reliability of the models. The results of the whole procedure affirm the proper implementation of the developed methodology under specific conditions and assumptions due to the lack of sufficient data, while they give a clear picture of the aquifer’s quantitative and qualitative status.
 
  Address Ilias Siarkos: isiarkos@civil.auth.gr; Pericles Latinopoulos latin@civil.auth.gr  
  Corporate Author School of Civil Engineering, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece Thesis  
  Publisher IAH Place of Publication Editor Springer  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-2174 ISBN Medium  
  Area Hydrogeology; groundwater modelling, sea water intrusion Expedition Conference  
  Notes Approved yes  
  Call Number MGRE @ redha.menani @ Serial 52  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: