toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghabayen, S.; McKee, M.; Kemblowski, M. doi  openurl
  Title Ionic and Isotopic Ratios for Identification of Salinity Sources and Missing Data in the Gaza Aquifer Type Journal Article
  Year 2006 Publication Journal of Hydrology Abbreviated Journal  
  Volume 318 Issue Pages (up) 360-373  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 87  
Permanent link to this record
 

 
Author Mihajlidi-Zelić, A.; Deršek-Timotić, I.; Relić, D.; Popović, A.; Đorđević, D. url  openurl
  Title Contribution of marine and continental aerosols to the content of major ions in the precipitation of the central Mediterranean Type Journal Article
  Year 2006 Publication Science of the total environment Abbreviated Journal  
  Volume 370 Issue 2-3 Pages (up) 441-451  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Mihajlidi-Zelić2006 Serial 60  
Permanent link to this record
 

 
Author Demirel, Z.; Güler, C. url  openurl
  Title Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey) Type Journal Article
  Year 2006 Publication Environmental geology Abbreviated Journal  
  Volume 49 Issue 3 Pages (up) 477-487  
  Keywords  
  Abstract In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors

presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few

phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1)

silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical

analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ demirel2006hydrogeochemical Serial 63  
Permanent link to this record
 

 
Author Pacheco, F.A.L.; Szocs, T. doi  openurl
  Title “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary Type Journal Article
  Year 2006 Publication Applied Geochemistry Abbreviated Journal  
  Volume 21 Issue 4 Pages (up) 614-631  
  Keywords  
  Abstract In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite\textgreatercalcite\textgreaterplagioclase\textgreaterK-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Pacheco2006 Serial 35  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: