toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Lorenzo, T.; Galassi, D.M.P. url  doi
openurl 
  Title Agricultural impact on Mediterranean alluvial aquifers: do groundwater communities respond? Type Journal Article
  Year 2013 Publication Fundamental and Applied Limnology/Archiv für Hydrobiologie Abbreviated Journal  
  Volume 182 Issue 4 Pages (down) 271-282  
  Keywords alluvial aquifers, groundwater, stygobiont, nitrate, overexploitation  
  Abstract In Mediterranean countries agricultural development heavily depends on groundwater availability due

to arid and semi-arid climate and poor surface-water resources. Agriculture represents one of the most relevant

pressures which generate impacts in alluvial aquifers by means of fertilizers and pesticides usage and groundwater

overexploitation. Until now, very few studies have addressed the ecological response of groundwater fauna to

groundwater contamination and overexploitation due to agricultural practices. We investigated a Mediterranean

alluvial aquifer heavily affected by nitrates contamination and groundwater abstraction stress due to crop irrigation. The aim of this study was to evaluate the sensitivity of groundwater communities to (a) groundwater nitrate

contamination, (b) groundwater abstraction due to irrigation practices, and (c) saltwater intrusion. The present

work suggests that nitrate concentration lower than 150 mg l

–1 is not an immediate threat to groundwater biodiversity in alluvial aquifers. This conclusion must be carefully considered in the light of the total lack of knowledge

of the effects of long-term nitrate pollution on the groundwater biota. Moreover, local extinctions of less tolerant

species, prior to monitoring, cannot be ruled out. Conversely, species abundances in ground water are affected by

groundwater withdrawal, but species richness may be less sensitive. This result is attributable to the disappearance

of saturated microhabitats and to the depletion of fine unconsolidated sediments, reducing the surface available

to bacterial biofilm, which represent the trophic resource for several groundwater invertebrates and where the

main aquifer self-purification processes, such as denitrification, take place. Saltwater intrusion seems not to affect

groundwater species at the values measured in this coastal aquifer.
 
  Address  
  Corporate Author Thesis  
  Publisher E. Schweizerbart'sche Verlagsbuchhandlung Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1863-9135 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ DiLorenzo2013 Serial 43  
Permanent link to this record
 

 
Author Demirak, A.; Balci, A.; Karaoğlu, H.; Tosmur, B. url  openurl
  Title Chemical characteristics of rain water at an urban site of south western Turkey Type Journal Article
  Year 2006 Publication Environmental monitoring and assessment Abbreviated Journal  
  Volume 123 Issue 1-3 Pages (down) 271-283  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6369 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Demirak2006 Serial 56  
Permanent link to this record
 

 
Author Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. doi  openurl
  Title Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco Type Journal Article
  Year 2008 Publication Journal of Hydrology Abbreviated Journal  
  Volume 352 Issue 3 Pages (down) 267-287  
  Keywords  
  Abstract Groundwater and surface water in Souss–Massa basin in the west-southern part of Morocco is characterized by a large variation in salinity, up to levels of 37gL−1. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation using several chemical and isotopic tracers such as Br/Cl, δ18O, δ2H, 3H, 87Sr/86Sr, δ11B, and 14C was carried out in order to determine the sources of water recharge to the aquifer, the origin of salinity, and the residence time of water. Stable isotope, 3H and 14C data indicate that the high Atlas mountains in the northern margin of the Souss–Massa basin with high rainfall and low δ18O and δ2H values (−6 to −8‰ and −36 to −50‰) is currently constitute the major source of recharge to the Souss–Massa shallow aquifer, particularly along the eastern part of the basin. Localized stable isotope enrichments offset meteoric isotopic signature and are associated with high nitrate concentrations, which infer water recycling via water agricultural return flows. The 3H and 14C data suggest that the residence time of water in the western part of the basin is in the order of several thousands of years; hence old water is mined, particularly in the coastal areas. The multiple isotope analyses and chemical tracing of groundwater from the basin reveal that seawater intrusion is just one of multiple salinity sources that affect the quality of groundwater in the Souss–Massa aquifer. We differentiate between modern seawater intrusion, salinization by remnants of seawater entrapped in the middle Souss plains, recharge of nitrate-rich agricultural return flow, and dissolution of evaporate rocks (gypsum and halite minerals) along the outcrops of the high Atlas mountains. The data generated in this study provide the framework for a comprehensive management plan in which water exploitation should shift toward the eastern part of the basin where current recharge occurs with young and high quality groundwater. In contrast, we argued that the heavily exploited aquifer along the coastal areas is more vulnerable given the relatively longer residence time of the water and salinization processes in this part of the aquifer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Bouchaou2008 Serial 17  
Permanent link to this record
 

 
Author Kumar, A.R.; Riyazuddin, P. url  openurl
  Title Speciation of selenium in groundwater: Seasonal variations and redox transformations Type Journal Article
  Year 2011 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 192 Issue 1 Pages (down) 263-269  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ kumar2011speciation Serial 67  
Permanent link to this record
 

 
Author Stigter, T.Y.; van Ooijen, S.P.J.; Post, V.E.A.; Appelo, C.A.J.; Carvalho Dill, A.M.M. doi  openurl
  Title A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal Type Journal Article
  Year 1998 Publication Journal of Hydrology Abbreviated Journal  
  Volume 208 Issue 3 Pages (down) 262-279  
  Keywords  
  Abstract In the Campina de Faro, in the south of Portugal, agricultural practices have a large impact on groundwater composition. These practices involve pumping of water for irrigation from combinations of large diameter, shallow wells (noras) and small diameter, deep boreholes (furos). Excess irrigation water returns to the aquifer and mixes with water from the regional groundwater flow system. This irrigation return flow is concentrated by strong evapotranspiration and by flushing of fertilisers. The concentration increase induces cation exchange, whereby Ca on the soil exchanger is replaced by Na. The mixing in the aquifer allows application of a mixing cell model which may then be used to calculate transmissivities from the Cl mass balance. The calculations are complicated by the time-variant behaviour of Cl and the method is adjusted to calculate the change of chloride in time. Results from the calculations appear to be in good agreement with hydrochemical observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Stigter1998 Serial 38  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: