|   | 
Details
   web
Records
Author Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L.
Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 650 Issue (down) Pt 1 Pages 878-890
Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay
Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.
Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30308862 Approved no
Call Number THL @ christoph.kuells @ Serial 184
Permanent link to this record
 

 
Author Di Lorenzo, T.; Galassi, D.M.P.
Title Agricultural impact on Mediterranean alluvial aquifers: do groundwater communities respond? Type Journal Article
Year 2013 Publication Fundamental and Applied Limnology/Archiv für Hydrobiologie Abbreviated Journal
Volume 182 Issue (down) 4 Pages 271-282
Keywords alluvial aquifers, groundwater, stygobiont, nitrate, overexploitation
Abstract In Mediterranean countries agricultural development heavily depends on groundwater availability due

to arid and semi-arid climate and poor surface-water resources. Agriculture represents one of the most relevant

pressures which generate impacts in alluvial aquifers by means of fertilizers and pesticides usage and groundwater

overexploitation. Until now, very few studies have addressed the ecological response of groundwater fauna to

groundwater contamination and overexploitation due to agricultural practices. We investigated a Mediterranean

alluvial aquifer heavily affected by nitrates contamination and groundwater abstraction stress due to crop irrigation. The aim of this study was to evaluate the sensitivity of groundwater communities to (a) groundwater nitrate

contamination, (b) groundwater abstraction due to irrigation practices, and (c) saltwater intrusion. The present

work suggests that nitrate concentration lower than 150 mg l

–1 is not an immediate threat to groundwater biodiversity in alluvial aquifers. This conclusion must be carefully considered in the light of the total lack of knowledge

of the effects of long-term nitrate pollution on the groundwater biota. Moreover, local extinctions of less tolerant

species, prior to monitoring, cannot be ruled out. Conversely, species abundances in ground water are affected by

groundwater withdrawal, but species richness may be less sensitive. This result is attributable to the disappearance

of saturated microhabitats and to the depletion of fine unconsolidated sediments, reducing the surface available

to bacterial biofilm, which represent the trophic resource for several groundwater invertebrates and where the

main aquifer self-purification processes, such as denitrification, take place. Saltwater intrusion seems not to affect

groundwater species at the values measured in this coastal aquifer.
Address
Corporate Author Thesis
Publisher E. Schweizerbart'sche Verlagsbuchhandlung Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1863-9135 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ DiLorenzo2013 Serial 43
Permanent link to this record
 

 
Author El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J.
Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
Year 2007 Publication Environmental Geology Abbreviated Journal
Volume 54 Issue (down) 3 Pages 491-503
Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg
Abstract The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44
Permanent link to this record
 

 
Author Kim, Y.; Lee, K.-S.; Koh, D.-C.; Lee, D.-H.; Lee, S.-G.; Park, W.-B.; Koh, G.-W.; Woo, N.-C.
Title Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea Type Journal Article
Year 2003 Publication Journal of Hydrology Abbreviated Journal
Volume 270 Issue (down) 3 Pages 282-294
Keywords Jeju volcanic island, Coastal aquifer, Groundwater salinization, Hydrogeochemistry, Environmental isotopes, Mixing process
Abstract In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kim2003282 Serial 172
Permanent link to this record
 

 
Author Liu, Y.; Jin, M.; Wang, J.
Title Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin Type Journal Article
Year 2018 Publication Hydrological Processes Abbreviated Journal
Volume 32 Issue (down) 20 Pages 3108-3127
Keywords deuterium excess, groundwater salinization, Northwest China, Manas River basin, stable isotopes
Abstract Abstract In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl− concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl− concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo-water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ doi:10.1002/hyp.13243 Serial 178
Permanent link to this record