|   | 
Details
   web
Records
Author Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q.
Title Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China Type Journal Article
Year 2014 Publication (up) Journal of Hydrology Abbreviated Journal
Volume 508 Issue Pages 12-27
Keywords Laizhou Bay, Coastal aquifers, Groundwater hydrochemistry, Stable isotopes, Saltwater intrusion
Abstract Summary A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for salt production in the north. Groundwater is characterized by hydrochemical zonation of water types (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. Examination of the groundwater stable isotope δ18O and δ2H values (between −9.5‰ and −3.0‰ and −75‰ and −40‰, respectively) and chloride contents (∼2 to 1000meq/L) of the groundwater indicate that the saline end-member is brine rather than seawater, and most groundwater samples plot on mixing trajectories between fresh groundwater (δ18O of between −6.0‰ and −9.0‰; Cl<5meq/L) and sampled brines (δ18O of approximately −3.0‰ and Cl>1000meq/L). Locally elevated Na/Cl ratios likely result from ion exchange in areas of long-term freshening. The brines, with radiocarbon activities of ∼30 to 60 pMC likely formed during the Holocene as a result of the sequence of transgression-regression and evaporation; while deep, fresh groundwater with depleted stable isotopic values (δ18O=−9.7‰ and δ2H=−71‰) and low radiocarbon activity (<20 pMC) was probably recharged during a cooler period in the late Pleistocene, as is common throughout northern China. An increase in the salinity and tritium concentration in some shallow groundwater sampled in the 1990s and re-sampled here indicates that intensive brine extraction has locally resulted in rapid mixing of young, fresh groundwater and saline brine. The δ18O and δ2H values of brines (∼−3.0‰ and −35‰) are much lower than that of modern seawater, which could be explained by 1) mixing of original (δ18O enriched) brine that was more saline than presently observed, with fresh groundwater recharged by precipitation and/or 2) dilution of the palaeo-seawater with continental runoff prior to and/or during brine formation. The first mechanism is supported by relatively high Br/Cl molar ratios (1.7×10−3–2.5×10−3) in brine water compared with ∼1.5×10−3 in seawater, which could indicate that the brines originally reached halite saturation and were subsequently diluted with fresher groundwater over the long-term. Decreasing 14C activities with increasing sampling depth and increasing proximity to the coastline indicate that the south coastal aquifer in Laizhou Bay is dominated by regional lateral flow, on millennial timescales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Han201412 Serial 174
Permanent link to this record
 

 
Author Krüger, N.; Külls, C.; Bruggeman, A.; Christofi, C.
Title Groundwater recharge estimation in Mediterranean mountain environments by isotope profiles–Partitioning of macropore and matrix flow Type Journal Article
Year 2024 Publication (up) Journal of Hydrology Abbreviated Journal
Volume 637 Issue Pages 131352
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kruger2024groundwater Serial 216
Permanent link to this record
 

 
Author Ajmera, T.K.; Rastogi, A.K.
Title Artificial Neural Network Application on Estimation of Aquifer Transmissivity Type Journal Article
Year 2008 Publication (up) Journal of Spatial Hydrology Abbreviated Journal
Volume 8 Issue 2 Pages 15-31
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ ajmera2008 Serial 115
Permanent link to this record
 

 
Author Bahir, M.; Ouhamdouch, S.; Carreira, P.M.
Title Isotopic and geochemical methods for studying water–rock interaction and recharge mode: application to the Cenomanian–Turonian and Plio-Quaternary aquifers of Essaouira Basin, Morocco Type Journal Article
Year 2018 Publication (up) Mar. Freshwater Res. Abbreviated Journal
Volume 69 Issue 8 Pages 1290-1300
Keywords geochemistry, semi-arid area, stable isotopes, water resources.
Abstract Study of the Cenomanian–Turonian and Plio–Quaternary aquifers of Essaouira basin (Western Morocco), based on the interpretation of geochemical (major elements) and isotopic (18O, 2H, 13C and 14C) data, has aided the understanding of the hydrodynamics of these aquifers, which is greatly affected by tectonics. Hydrochemical characteristics based on the bivariate diagrams of major ions (Cl–, SO42–, NO3–, HCO3–, Na+, Mg2+, K+ and Ca2+) and electrical conductivity and mineral saturation indices indicate that the origins of groundwater mineralisation are the result of: (1) evaporite dissolution; (2) cation exchange reactions; (3) and evaporation processes. Radiogenic isotopes (3H and 14C) have highlighted the presence of significant recent recharge in the eastern part of the basin, with groundwater moving according to the general flow path (south-east to north-west). Stable isotope data from the Essaouira basin plot along the Global Meteoric Water Line and below the Local Meteoric Water Line. This suggests that groundwater has been recharged under several different climate regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 191
Permanent link to this record
 

 
Author Marengo*, E.; Gennaro, M.C.; Robotti, E.; Maiocchi, A.; Pavese, G.; Indaco, A.; Rainero, A.
Title Statistical analysis of ground water distribution in Alessandria Province (Piedmont—Italy) Type Journal Article
Year 2008 Publication (up) Microchem. J. Abbreviated Journal
Volume 88 Issue Pages 167-177
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Marengo2008 Serial 134
Permanent link to this record