|   | 
Details
   web
Records
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying evapotranspiration and drainage losses in a semi-arid nectarine (Prunus persica var. nucipersica) field with a dynamic crop coefficient (Kc) derived from leaf area index measurements Type Journal Article
Year 2022 Publication (down) Water Abbreviated Journal
Volume 14 Issue 5 Pages 734
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ eliades2022quantifying Serial 211
Permanent link to this record
 

 
Author Mehraein, M.; Mohanavelu, A.; Naganna, S.R.; Kulls, C.; Kisi, O.
Title Monthly streamflow prediction by metaheuristic regression approaches considering satellite precipitation data Type Journal Article
Year 2022 Publication (down) Water Abbreviated Journal
Volume 14 Issue 22 Pages 3636
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ mehraein2022monthly Serial 219
Permanent link to this record
 

 
Author Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L.
Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
Year 2019 Publication (down) The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 650 Issue Pt 1 Pages 878-890
Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay
Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.
Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30308862 Approved no
Call Number THL @ christoph.kuells @ Serial 184
Permanent link to this record
 

 
Author Ola, I.; Drebenstedt, C.; Burgess, R.M.; Mensah, M.; Hoth, N.; Külls, C.
Title Remediating Oil Contamination in the Niger Delta Region of Nigeria: Technical Options and Monitoring Strategies Type Journal Article
Year 2024 Publication (down) The Extractive Industries and Society Abbreviated Journal
Volume 17 Issue Pages 101405
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ola2024remediating Serial 224
Permanent link to this record
 

 
Author Morales-Baquero, R.; Pulido-Villena, E.; Reche, I.
Title Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region Type Journal Article
Year 2013 Publication (down) Tellus B: Chemical and Physical Meteorology Abbreviated Journal
Volume 65 Issue 1 Pages 18720
Keywords
Abstract We studied if the presence of Saharan dust intrusions and the rains modify the chemical signature of the wet and dry deposition in the southern Iberian Peninsula. We have sorted the 109 sampling weeks by the presence (rainy weeks) or absence (dry weeks) of rain and by the occurrence or not of Saharan dust intrusions. Dry deposition dominated the delivery of particulate material (PM), total phosphorus (TP), soluble reactive phosphorus (SRP), Ca2+, Mg2+ and K+, whereas wet deposition dominated the delivery of Na+, total nitrogen, and . In the dry weeks, the presence of Saharan dust intrusions lead to higher inputs of PM, TP, SRP, Ca2+, Mg2+ and K+ in the dry deposition. Conversely, in the rainy weeks, there were no differences in mean values of dry deposition irrespective of the occurrence of Saharan dust intrusions. Nevertheless, in the presence of Saharan intrusions and some rain, the weekly collection of PM, TP and Ca2+ in dry deposition were significantly higher and increased as rainfall was lower. By contrast, the ions Cl– and Na+ in wet deposition were higher in absence of Saharan dust intrusion and increased as rainfall increased.
Address
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ doi:10.3402/tellusb.v65i0.18720 Serial 54
Permanent link to this record