toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhou, X.; Li, C. url  openurl
  Title Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China Type Journal Article
  Year 1992 Publication (up) Journal of Hydrology Abbreviated Journal  
  Volume 138 Issue 1 Pages 1-15  
  Keywords  
  Abstract Subsurface brines are abundant in the Sichuan Basin, China. Five brine-bearing aquifers have been identified within rocks of Triassic age in the central part of the basin. These are of two types: brine-bearing clastic and brine-bearing carbonate aquifers. Brines in this region have high total dissolved solids and chemical species that are different from those of evaporatively concentrated seawater. Deep formation brines in clastic aquifers, in which evaporites do not exist, are characterized by high concentrations of Ca, Sr, Ba, Br and I, low concentrations of Mg and K, and lack of SO4, and are dominated by the NaCaCl type. Brines in carbonate aquifers, which have interbeds of evaporites, are characterized by high total dissolved solids, low concentrations of Ca, Mg and SO4, and lack of Ba, and are of the NaCl type. The brines in clastic aquifers originate from connate continental sedimentary waters mixed with marine waters; membrane filtration through shales has played an important part in modifying the chemical compositions and increasing the salinity of the brines. Those in carbonate aquifers are bittern marine sedimentary waters, with chemical compositions mainly controlled by precipitation of evaporites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Asia Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zhou19921 Serial 41  
Permanent link to this record
 

 
Author Ladouche, B.; Luc, A.; Nathalie, D. url  openurl
  Title Chemical and isotopic investigation of rainwater in Southern France (1996–2002): Potential use as input signal for karst functioning investigation Type Journal Article
  Year 2009 Publication (up) Journal of Hydrology Abbreviated Journal  
  Volume 367 Issue 1-2 Pages 150-164  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Ladouche2009 Serial 58  
Permanent link to this record
 

 
Author Ghabayen, S.; McKee, M.; Kemblowski, M. doi  openurl
  Title Ionic and Isotopic Ratios for Identification of Salinity Sources and Missing Data in the Gaza Aquifer Type Journal Article
  Year 2006 Publication (up) Journal of Hydrology Abbreviated Journal  
  Volume 318 Issue Pages 360-373  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 87  
Permanent link to this record
 

 
Author Kim, Y.; Lee, K.-S.; Koh, D.-C.; Lee, D.-H.; Lee, S.-G.; Park, W.-B.; Koh, G.-W.; Woo, N.-C. url  openurl
  Title Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea Type Journal Article
  Year 2003 Publication (up) Journal of Hydrology Abbreviated Journal  
  Volume 270 Issue 3 Pages 282-294  
  Keywords Jeju volcanic island, Coastal aquifer, Groundwater salinization, Hydrogeochemistry, Environmental isotopes, Mixing process  
  Abstract In order to identify the origin of saline groundwater in the eastern part of Jeju volcanic island, Korea, a hydrogeochemical and isotopic study has been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid contents of groundwaters are highly variable (77–21,782mg/l). Oxygen, hydrogen, sulfur, and strontium isotopic data clearly show that the saline water results from mixing of groundwater with seawater. Strontium isotopic compositions and Br/Cl and I/Cl ratios strongly suggest that the source of salinity is modern seawater intrusion. Hydrogeochemical characteristics based on bivariate diagrams of major and minor ions show that changes in the chemical composition of groundwater are mainly controlled by the salinization process followed by cation-exchange reactions. The highly permeable aquifers at the east coastal region are characterized by low hydraulic gradient and discharge rate and high hydraulic conductivity as compared with other regions. These properties enhance the salinization of groundwater observed in the study area. Based on the Cl, Br, and δ18O data, seawater was determined to have intruded inland some 2.5km from the coastline. Considering the poor correlation of sampling depth and Cl concentrations observed, the position of seawater-freshwater interface is not uniformly distributed in the study area, due to heterogeneities of the basaltic aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kim2003282 Serial 172  
Permanent link to this record
 

 
Author Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q. url  openurl
  Title Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China Type Journal Article
  Year 2014 Publication (up) Journal of Hydrology Abbreviated Journal  
  Volume 508 Issue Pages 12-27  
  Keywords Laizhou Bay, Coastal aquifers, Groundwater hydrochemistry, Stable isotopes, Saltwater intrusion  
  Abstract Summary A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for salt production in the north. Groundwater is characterized by hydrochemical zonation of water types (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. Examination of the groundwater stable isotope δ18O and δ2H values (between −9.5‰ and −3.0‰ and −75‰ and −40‰, respectively) and chloride contents (∼2 to 1000meq/L) of the groundwater indicate that the saline end-member is brine rather than seawater, and most groundwater samples plot on mixing trajectories between fresh groundwater (δ18O of between −6.0‰ and −9.0‰; Cl<5meq/L) and sampled brines (δ18O of approximately −3.0‰ and Cl>1000meq/L). Locally elevated Na/Cl ratios likely result from ion exchange in areas of long-term freshening. The brines, with radiocarbon activities of ∼30 to 60 pMC likely formed during the Holocene as a result of the sequence of transgression-regression and evaporation; while deep, fresh groundwater with depleted stable isotopic values (δ18O=−9.7‰ and δ2H=−71‰) and low radiocarbon activity (<20 pMC) was probably recharged during a cooler period in the late Pleistocene, as is common throughout northern China. An increase in the salinity and tritium concentration in some shallow groundwater sampled in the 1990s and re-sampled here indicates that intensive brine extraction has locally resulted in rapid mixing of young, fresh groundwater and saline brine. The δ18O and δ2H values of brines (∼−3.0‰ and −35‰) are much lower than that of modern seawater, which could be explained by 1) mixing of original (δ18O enriched) brine that was more saline than presently observed, with fresh groundwater recharged by precipitation and/or 2) dilution of the palaeo-seawater with continental runoff prior to and/or during brine formation. The first mechanism is supported by relatively high Br/Cl molar ratios (1.7×10−3–2.5×10−3) in brine water compared with ∼1.5×10−3 in seawater, which could indicate that the brines originally reached halite saturation and were subsequently diluted with fresher groundwater over the long-term. Decreasing 14C activities with increasing sampling depth and increasing proximity to the coastline indicate that the south coastal aquifer in Laizhou Bay is dominated by regional lateral flow, on millennial timescales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Han201412 Serial 174  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: