toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sarker, M.M.R.; Van Camp, M.; Islam, M.; Ahmed, N.; Walraevens, K. url  doi
openurl 
  Title Hydrochemistry in coastal aquifer of southwest Bangladesh : origin of salinity Type Journal Article
  Year 2018 Publication (up) Environmental Earth Sciences Abbreviated Journal  
  Volume 77 Issue 2 Pages 20  
  Keywords Hydrochemistry,Stable isotope,Seawater intrusion,Coastal aquifer,Bangladesh,DAR-ES-SALAAM,SEAWATER INTRUSION,DELTA PLAIN,GROUNDWATER,DRINKING,TANZANIA,DROUGHT,COMPLEX  
  Abstract In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200-300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1866-6280 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sarker2018 Serial 194  
Permanent link to this record
 

 
Author Panagopoulos, G. url  doi
openurl 
  Title Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece Type Journal Article
  Year 2009 Publication (up) Environmental Geology Abbreviated Journal  
  Volume 58 Issue 5 Pages 1067-1082  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Greece Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Panagopoulos2009 Serial 36  
Permanent link to this record
 

 
Author El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J. url  doi
openurl 
  Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
  Year 2007 Publication (up) Environmental Geology Abbreviated Journal  
  Volume 54 Issue 3 Pages 491-503  
  Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg  
  Abstract The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44  
Permanent link to this record
 

 
Author Schmittner, K.-E.; Giresse, P. url  doi
openurl 
  Title The impact of atmospheric sodium on erodibility of clay in a coastal Mediterranean region Type Journal Article
  Year 1999 Publication (up) Environmental Geology Abbreviated Journal  
  Volume 37 Issue 3 Pages 195-206  
  Keywords  
  Abstract  Heavy rainfalls, between 25 and 100 mm·h–1, were simulated on Pliocene/Quaternary sediments. To reproduce the heterogeneity of natural environments, 231 small plots of various sizes (between 2.5 and 3.5 m2; mean: about 3 m2) were used. The duration of all simulations was 1 h. We used water that had been collected during natural rainfall. The concentration of clay particles in the sheet wash depended upon the concentration of dissolved sodium in the wash (for about 42%) and of the sheet wash quantity (for about 37%). Under natural water conditions colloidal matter, like clay minerals, is charged negatively and therefore is destabilized by metal cations such as in the case of Na+. Results suggest that relatively higher concentrations of montmorrillonite were related to higher concentrations of sodium as opposed to illite and kaolinite. Microflakes of up to 25 μ were observed to vary between face-to-edge and face-to-face modes (competition between protons and other cations). The concentration of dissolved sodium (Na+) in the runoff water depends on water and sodium balances such as atmospheric input, infiltration, evaporation and surface water runoff. The reduction of vegetation cover increases the amount of salt and amorphous matter in/on the topsoil between heavy rainfall generations. The best predictor to explain montmorillonite, illite and kaolinite in % of mineral clay-sized matter in the surface water runoff (sheet wash) is the percentage of each clay mineral in the topsoil. As opposed to illite and kaolinite, more sheet wash indicate for montmorillonite relatively higher concentrations in the wash. The results of model simulations were confirmed on different field plots of about 1 ha and small catchments during natural heavy rainfall events. Models can also be used to understand and to better simulate sheet, rill and gully erosion, micropedimentation; and pedimentation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-0495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Schmittner1999 Serial 53  
Permanent link to this record
 

 
Author Demirel, Z.; Güler, C. url  openurl
  Title Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey) Type Journal Article
  Year 2006 Publication (up) Environmental geology Abbreviated Journal  
  Volume 49 Issue 3 Pages 477-487  
  Keywords  
  Abstract In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors

presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few

phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1)

silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical

analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ demirel2006hydrogeochemical Serial 63  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: