|   | 
Details
   web
Records
Author Edmunds, W.M.
Title Bromine geochemistry of british groundwaters Type Journal Article
Year 1996 Publication (down) Mineralogical Magazine Abbreviated Journal
Volume 60 Issue 399 Pages 275-284
Keywords
Abstract \textlessp\textgreater The concentrations of Br in potable groundwaters in the United Kingdom range from 60 to 340 µg 1 \textlesssup\textgreater-1\textless/sup\textgreater . The occurrence of Br is described in terms of the Br/Cl weight ratio which enables small changes in bromide concentrations to be assessed in terms of salinity. Median values of Br/Cl in groundwaters range from 2.60 to 5.15 × 10 \textlesssup\textgreater−3\textless/sup\textgreater compared with a sea water ratio of 3.47× 10 \textlesssup\textgreater−3\textless/sup\textgreater . In recent shallow groundwaters the Br/Cl ratio is rather variable in response to a range of natural and anthropogenic inputs (marine and industrial aerosols, industrial and agricultural chemicals including road salt). Some slight enrichment in Br/Cl also occurs naturally during infiltration as a result of biogeochemical processes. \textless/p\textgreater
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-461x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Edmunds1996 Serial 20
Permanent link to this record
 

 
Author Marengo*, E.; Gennaro, M.C.; Robotti, E.; Maiocchi, A.; Pavese, G.; Indaco, A.; Rainero, A.
Title Statistical analysis of ground water distribution in Alessandria Province (Piedmont—Italy) Type Journal Article
Year 2008 Publication (down) Microchem. J. Abbreviated Journal
Volume 88 Issue Pages 167-177
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Marengo2008 Serial 134
Permanent link to this record
 

 
Author Bahir, M.; Ouhamdouch, S.; Carreira, P.M.
Title Isotopic and geochemical methods for studying water–rock interaction and recharge mode: application to the Cenomanian–Turonian and Plio-Quaternary aquifers of Essaouira Basin, Morocco Type Journal Article
Year 2018 Publication (down) Mar. Freshwater Res. Abbreviated Journal
Volume 69 Issue 8 Pages 1290-1300
Keywords geochemistry, semi-arid area, stable isotopes, water resources.
Abstract Study of the Cenomanian–Turonian and Plio–Quaternary aquifers of Essaouira basin (Western Morocco), based on the interpretation of geochemical (major elements) and isotopic (18O, 2H, 13C and 14C) data, has aided the understanding of the hydrodynamics of these aquifers, which is greatly affected by tectonics. Hydrochemical characteristics based on the bivariate diagrams of major ions (Cl–, SO42–, NO3–, HCO3–, Na+, Mg2+, K+ and Ca2+) and electrical conductivity and mineral saturation indices indicate that the origins of groundwater mineralisation are the result of: (1) evaporite dissolution; (2) cation exchange reactions; (3) and evaporation processes. Radiogenic isotopes (3H and 14C) have highlighted the presence of significant recent recharge in the eastern part of the basin, with groundwater moving according to the general flow path (south-east to north-west). Stable isotope data from the Essaouira basin plot along the Global Meteoric Water Line and below the Local Meteoric Water Line. This suggests that groundwater has been recharged under several different climate regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 191
Permanent link to this record
 

 
Author Ajmera, T.K.; Rastogi, A.K.
Title Artificial Neural Network Application on Estimation of Aquifer Transmissivity Type Journal Article
Year 2008 Publication (down) Journal of Spatial Hydrology Abbreviated Journal
Volume 8 Issue 2 Pages 15-31
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ ajmera2008 Serial 115
Permanent link to this record
 

 
Author Hanshaw, B.B.; Back, W.
Title Major geochemical processes in the evolution of carbonate—Aquifer systems Type Journal Article
Year 1979 Publication (down) Journal of Hydrology Abbreviated Journal
Volume 43 Issue 1 Pages 287-312
Keywords
Abstract As a result of recent advances by carbonate petrologists and geochemists, hydrologists are provided with new insights into the origin and explanation of many aquifer characteristics and hydrologic phenomena. Some major advances include the recognition that: (1) most carbonate sediments are of biological origin; (2) they have a strong bimodal size-distribution; and (3) they originate in warm shallow seas. Although near-surface ocean water is oversaturated with respect to calcite, aragonite, dolomite and magnesite, the magnesium-hydration barrier effectively prevents either the organic or inorganic formation of dolomite and magnesite. Therefore, calcareous plants and animals produce only calcite and aragonite in hard parts of their bodies. Most carbonate aquifers that are composed of sand-size material have a high initial porosity; the sand grains that formed these aquifers originated primarily as small shells, broken shell fragments of larger invertebrates, or as chemically precipitated oolites. Carbonate rocks that originated as fine-grained muds were initially composed primarily of aragonite needles precipitated by algae and have extremely low permeability that requires fracturing and dissolution to develop into aquifers. Upon first emergence, most sand beds and reefs are good aquifers; on the other hand, the clay-sized carbonate material initially has high porosity but low permeability, a poor aquifer property. Without early fracture development in response to influences of tectonic activity these calcilutites would not begin to develop into aquifers. As a result of selective dissolution, inversion of the metastable aragonite to calcite, and recrystallization, the porosity is collected into larger void spaces, which may not change the overall porosity, but greatly increases permeability. Another major process which redistributes porosity and permeability in carbonates is dolomitization, which occurs in a variety of environments. These environments include back-reefs, where reflux dolomites may form, highly alkaline, on-shore and continental lakes, and sabkha flats; these dolomites are typically associated with evaporite minerals. However, these processes cannot account for most of the regionally extensive dolomites in the geologic record. A major environment of regional dolomitization is in the mixing zone (zone of dispersion) where profound changes in mineralogy and redistribution of porosity and permeability occur from the time of early emergence and continuing through the time when the rocks are well-developed aquifers. The reactions and processes, in response to mixing waters of differing chemical composition, include dissolution and precipitation of carbonate minerals in addition to dolomitization. An important control on permeability distribution in a mature aquifer system is the solution of dolomite with concomitant precipitation of calcite in response to gypsum dissolution (dedolomitization). Predictive models developed by mass-transfer calculations demonstrate the controlling reactions in aquifer systems through the constraints of mass balance and chemical equilibrium. An understanding of the origin, chemistry, mineralogy and environments of deposition and accumulation of carbonate minerals together with a comprehension of diagenetic processes that convert the sediments to rocks and geochemical, tectonic and hydrologic phenomena that create voids are important to hydrologists. With this knowledge, hydrologists are better able to predict porosity and permeability distribution in order to manage efficiently a carbonate—aquifer system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hanshaw1979 Serial 26
Permanent link to this record