toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Park, H.; Schlesinger, W. doi  openurl
  Title Global biochemical cycle of boron Type Journal Article
  Year 2002 Publication (down) Global Biogeochemical Cycles Abbreviated Journal  
  Volume 16 Issue Pages 1072  
  Keywords  
  Abstract The global Boron (B) cycle is primarily driven by a large flux (1.44 Tg B/yr) through the atmosphere derived from seasalt aerosols. Other significant sources of atmospheric boron include emissions during the combustion of biomass (0.26-0.43 Tg B/yr) and coal, which adds 0.20 Tg B/yr as an anthropogenic contribution. These known inputs to the atmosphere cannot account for the boron removed from the atmosphere during rainfall (3.0 Tg B/yr) and estimated dry deposition (1.3-2.7 Tg B/yr). In addition to atmospheric deposition, rock weathering is a source of boron (0.19 Tg B/yr) for terrestrial ecosystems, and humans mine about 0.31 Tg B/yr from the Earth's crust. More than 4.8 Tg B/yr circulates in the biogeochemical cycle of land plants, and about 0.53-0.63 Tg B/yr is carried from land to sea by rivers. The biogeochemical cycle of boron in the sea includes 4.4 Tg B/yr circulating in the marine biosphere, and an annual loss of 0.47 Tg B/yr to the oceanic crust via a variety of sedimentary processes that collectively remove only a small fraction of the total annual inputs to the oceans. Thus with our current understanding of the global biogeochemistry of B, the atmospheric budget shows outputs > inputs, while the marine compartments show inputs > outputs. Despite these uncertainties, it is clear that the human perturbation of the global B cycle has more than doubled the mobilization of B from the crust and contributes significantly to the B transport in rivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ article Serial 94  
Permanent link to this record
 

 
Author Castrignanò, A.; Buttafuoco, G.; Giasi, C. doi  openurl
  Title Assessment of groundwater salinisation risk using multivariate geostatistics Type Book Chapter
  Year 2008 Publication (down) geoENV VI – Geostatistics for Environmental Applications Abbreviated Journal  
  Volume 15 Issue Pages 191-202  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Dordrecht Place of Publication Editor A., S.; M.J., P.; R., D.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Castrignano2008 Serial 119  
Permanent link to this record
 

 
Author Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahrens, J.; Mori, C.; Neuholz, R.Ã.©; Schnetger, B.; Beck, M. url  doi
openurl 
  Title DSi as a Tracer for Submarine Groundwater Discharge Type Journal Article
  Year 2019 Publication (down) Frontiers in Marine Science Abbreviated Journal  
  Volume 6 Issue Pages 563  
  Keywords  
  Abstract Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Oehler2019 Serial 192  
Permanent link to this record
 

 
Author Richter, B. C.; Kreidler, C.W. url  openurl
  Title Identification of Sources of Groundwater Salinization using Geochemical Techniques Type Journal Article
  Year 1991 Publication (down) EPA/600/2-91/064 Abbreviated Journal  
  Volume Issue Pages 259  
  Keywords Geochemistry, USA, isotopes, salinization, ground water  
  Abstract  
  Address  
  Corporate Author Bureau of Economic Geology, Univ. of Austin, Texas Thesis  
  Publisher EPA Place of Publication Editor Bledsoe, B.E.  
  Language en Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 187  
Permanent link to this record
 

 
Author Bouzourra, H.; Bouhlila, R.; Elango, L.; Slama, F.; Ouslati, N. url  openurl
  Title Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations Type Journal Article
  Year 2015 Publication (down) Environmental Science and Pollution Research Abbreviated Journal  
  Volume 22 Issue 4 Pages 2643-2660  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ bouzourra2015characterization Serial 78  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: