toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gaye, C.B. doi  openurl
  Title Isotope techniques for monitoring groundwater salinization Type Journal Article
  Year 2001 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 9 Issue Pages 217-218  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 83  
Permanent link to this record
 

 
Author Khaska, M.; Salle], C. [L.G.L.; Lancelot, J.; team, A.S.T.E.R.; Mohamad, A.; Verdoux, P.; Noret, A.; Simler, R. url  openurl
  Title Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France) Type Journal Article
  Year 2013 Publication Applied Geochemistry Abbreviated Journal  
  Volume 37 Issue Pages 212-227  
  Keywords  
  Abstract In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl− concentrations. Average and maximum Cl− concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85mmol/L, respectively). Group A includes spring waters with Cl− concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl− concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl− concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater. Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively. With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaska2013212 Serial 84  
Permanent link to this record
 

 
Author Araguás-Araguás, L. openurl 
  Title Identification of the mechanisms and origin of salinization of groundwater in coastal aquifers by isotope techniques Type Journal Article
  Year 2003 Publication Tecnología de la intrusión de agua de mar en acuíferos costeros, Países Mediterráneos Abbreviated Journal  
  Volume Issue Pages 365-371  
  Keywords  
  Abstract When assessing the origin of salinity and the mechanisms of salinization in coastal aquifers, hydrogeologists may consider the combined use of certain geochemical tools to assess critical aspects of the hydrogeological setting of the system. These tools are based in the integrated use of chemical (major ions, trace elements and ionic ratios) and isotope parameters (oxygen, hydrogen, sulphur, carbon, strontium and boron). The problem of groundwater salinization in coastal aquifers, besides active seawater intrusion, may be affected by several human activities that accelerate the progressive deterioration of water quality, such as concentrated pumping, intensive agricultural practices including return flows or reuse of waste waters from urban or industrial origin. The characterisation of the perating processes and mechanisms of salinization is a requisite for a proper management of groundwater resources and for adopting remediation strategies. In this contribution the potential role of several isotopic tools in these studies is briefly described.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 86  
Permanent link to this record
 

 
Author Ghabayen, S.; McKee, M.; Kemblowski, M. doi  openurl
  Title Ionic and Isotopic Ratios for Identification of Salinity Sources and Missing Data in the Gaza Aquifer Type Journal Article
  Year 2006 Publication Journal of Hydrology Abbreviated Journal  
  Volume 318 Issue Pages 360-373  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 87  
Permanent link to this record
 

 
Author Post, V.E.A.; Houben, G.J.; van Engelen, J. url  doi
openurl 
  Title What is the Ghijben-Herzberg principle and who formulated it? Type Journal Article
  Year 2018 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 26 Issue 6 Pages 1801-1807  
  Keywords  
  Abstract It has been suggested in a number of historical notes that it was neither Willem Badon Ghijben nor Alexander Herzberg who formulated the famous principle now carrying their name, which relates the water-table elevation to the depth of the freshwater saltwater interface in coastal aquifers. In this paper, a systematic review of the literature pre-dating the publication of their work is presented. The aim is to establish to what extent these previous works captured the essence of the Ghijben-Herzberg principle, that is, the combination of a correct conceptual model of the hydrogeological conditions with a quantitative relationship. It was found that references to coastal fresh groundwater reserves can be traced back to Roman times, while the earliest detailed descriptions of a freshwater lens that could be found dates from the eighteenth century. The correct understanding of the hydrostatic equilibrium between fresh and salt groundwater is evident in works from the early nineteenth century. However, it was Badon Ghijben and Herzberg who combined this with the correct understanding of the groundwater conditions of a freshwater lens. It was further found that Herzberg had already recorded his findings in 1888 in a hand-written report, confirming speculation that such a report might exist.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-0157 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Post2018 Serial 89  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: