|   | 
Details
   web
Records
Author Han, D.; Post, V.E.A.; Song, X.
Title (up) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers Type Journal Article
Year 2015 Publication Journal of Hydrology Abbreviated Journal
Volume 531 Issue Pages 1067-1080
Keywords
Abstract Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H–δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl− concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3− concentrations (\textgreater39mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical models.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Han2015 Serial 24
Permanent link to this record
 

 
Author Zaidi*, F.K.; Nazzal, Y.; Ahmed, I.; Al-Bassam, A.M.; Al-Arifi, N.S.; Ghrefat, H.; Al-Shaltoni, S.A.
Title (up) Hydrochemical processes governing groundwater quality of sedimentary aquifers in Central Saudi Arabia and its environmental implications Type Journal Article
Year 2015 Publication Environ. Earth Sci. Abbreviated Journal
Volume 74 Issue Pages 1555-1568
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Zaidi2015 Serial 127
Permanent link to this record
 

 
Author Thakur, J.K.
Title (up) Optimizing groundwater monitoring networks using integrated statistical and geostatistical approaches Type Journal Article
Year 2015 Publication J. Hydrol. Abbreviated Journal
Volume 2 Issue Pages 148-175
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2306-5338 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Thakur2015 Serial 163
Permanent link to this record
 

 
Author Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.M.G.L.; Pauwels, H.; Chatton, E.; Franzen, Melissa; Aurouet, A.; Lasseur, E.; Picot-Colbeaux, G.; Guerrot, C.; Fléhoc, C.; Labasque, T.; Santos, Jeane Glaucia; Paiva, Anderson L.R.; Braibant, G.; Pierre, D.
Title (up) Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach Type Journal Article
Year 2015 Publication Science of the Total Environment Abbreviated Journal
Volume 530-531 Issue Pages 411-429
Keywords Salinization origins; Salinization processes; Groundwater; Coastal aquifer; Strontium isotopes; Boron isotopes; Recife; Brazil
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ cary:hal-01161949 Serial 85
Permanent link to this record
 

 
Author Sebben, M.L.; Werner, A.D.; Graf, T.
Title (up) Seawater intrusion in fractured coastal aquifers: A preliminary numerical investigation using a fractured Henry problem Type Journal Article
Year 2015 Publication Advances in Water Resources Abbreviated Journal
Volume 85 Issue Pages 93-108
Keywords
Abstract Despite that fractured coastal aquifers are widespread, the influence of fracture characteristics on seawater intrusion (SWI) has not been explored in previous studies. This research uses numerical modelling in a first step towards understanding the influence of fracture orientation, location and density on the extent of seawater and accompanying patterns of groundwater discharge in an idealised coastal aquifer. Specifically, aquifers containing single fractures or networks of regularly spaced fractures are studied using modified forms of the Henry SWI benchmark problem. The applicability of equivalent porous media (EPM) models for representing simple fracture networks in steady-state simulations of SWI is tested. The results indicate that the influence of fractures on SWI is likely to be mixed, ranging from enhancement to reduction in seawater extent and the width of the mixing zone. For the conceptual models considered here, vertical fractures in contact with the seawater wedge increase the width of the mixing zone, whereas vertical fractures inland of the wedge have minimal impact on the seawater distribution. Horizontal fractures in the lower part of the aquifer force the wedge seaward, whereas horizontal fractures located within the zone of freshwater discharge enhance the wedge. Inclined fractures roughly parallel to the seawater-freshwater interface increase the landward extent of seawater and fractures perpendicular to the interface inhibit the wedge. The results show that EPM models are likely inadequate for inferring salinity distributions in most of the fractured cases, although the EPM approach may be suitable for orthogonal fracture networks if fracture density is high and appropriate dispersivity values can be determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0309-1708 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Sebben2015 Serial 37
Permanent link to this record