toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Richter, B. C.; Kreidler, C.W. url  openurl
  Title (up) Identification of Sources of Groundwater Salinization using Geochemical Techniques Type Journal Article
  Year 1991 Publication EPA/600/2-91/064 Abbreviated Journal  
  Volume Issue Pages 259  
  Keywords Geochemistry, USA, isotopes, salinization, ground water  
  Abstract  
  Address  
  Corporate Author Bureau of Economic Geology, Univ. of Austin, Texas Thesis  
  Publisher EPA Place of Publication Editor Bledsoe, B.E.  
  Language en Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 187  
Permanent link to this record
 

 
Author Narany, T.S.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Juahir, H.; Fakharian, K. doi  openurl
  Title (up) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol plain, Iran Type Journal Article
  Year 2014 Publication Sci. World J. Abbreviated Journal  
  Volume 419058, Issue Pages 15  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ narany2014 Serial 117  
Permanent link to this record
 

 
Author Araguás-Araguás, L. openurl 
  Title (up) Identification of the mechanisms and origin of salinization of groundwater in coastal aquifers by isotope techniques Type Journal Article
  Year 2003 Publication Tecnología de la intrusión de agua de mar en acuíferos costeros, Países Mediterráneos Abbreviated Journal  
  Volume Issue Pages 365-371  
  Keywords  
  Abstract When assessing the origin of salinity and the mechanisms of salinization in coastal aquifers, hydrogeologists may consider the combined use of certain geochemical tools to assess critical aspects of the hydrogeological setting of the system. These tools are based in the integrated use of chemical (major ions, trace elements and ionic ratios) and isotope parameters (oxygen, hydrogen, sulphur, carbon, strontium and boron). The problem of groundwater salinization in coastal aquifers, besides active seawater intrusion, may be affected by several human activities that accelerate the progressive deterioration of water quality, such as concentrated pumping, intensive agricultural practices including return flows or reuse of waste waters from urban or industrial origin. The characterisation of the perating processes and mechanisms of salinization is a requisite for a proper management of groundwater resources and for adopting remediation strategies. In this contribution the potential role of several isotopic tools in these studies is briefly described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ article Serial 86  
Permanent link to this record
 

 
Author Hermans*, T.; Vandenbohede, A.; Lebbe, L.; Martin, R.; Kemna, A.; Beaujean, J.; Nguyen, F. doi  openurl
  Title (up) Imaging artificial salt water infiltration using electrical resistivity tomographyconstrained by geostatistical data Type Journal Article
  Year 2012 Publication J. Hydrol. Abbreviated Journal  
  Volume 438–439 Issue Pages 168-180  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ hermans2012 Serial 111  
Permanent link to this record
 

 
Author Liu, Y.; Jin, M.; Wang, J. url  doi
openurl 
  Title (up) Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin Type Journal Article
  Year 2018 Publication Hydrological Processes Abbreviated Journal  
  Volume 32 Issue 20 Pages 3108-3127  
  Keywords deuterium excess, groundwater salinization, Northwest China, Manas River basin, stable isotopes  
  Abstract Abstract In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl− concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl− concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo-water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ doi:10.1002/hyp.13243 Serial 178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: