|   | 
Details
   web
Records
Author Russak, A.; Sivan, O.; Yechieli, Y.
Title (down) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers Type Journal Article
Year 2016 Publication Chemical Geology Abbreviated Journal
Volume 441 Issue Pages 35-46
Keywords Seawater intrusion, Fresh-saline water interface, Trace metal, Manganese, Lithium, Boron
Abstract The current global intrusion of seawater into coastal aquifers causes salinization of groundwater and thus significant degradation of its quality. This study quantified the effect of seawater intrusion and freshening events in coastal aquifers on trace elements (Li, B, Mn and Ba) across the fresh-saline water interface (FSI) and their possible use as indicators for these events. This was done by combining field data and column experiments simulating these events. The experiments enabled quantification of the processes affecting the trace element composition and examination of whether salinization and freshening events are geochemically reversible, which has been seldom investigated. The dominant process affecting trace element composition during salinization and freshening is ion exchange. The results of the experiments show that the concentrations of major cations and Li+ were reversible during salinization and freshening, whereas B, Mn2+ and Ba2+ were not. During salinization, Li+ and B were depleted due to sorption by 10 and 100μmol·L−1, respectively, to about half of their expected conservative concentrations. The relative depletion of Li+ increased with distance from the shore, representing the propagation of salinization. Ba2+ and Mn2+ were desorbed from the sediment during salinization and enriched by tenfold in the aqueous phase compared to their concentration in seawater ( 0.1 μeq·L−1). During freshening both were depleted by almost tenfold compared to their concentration in fresh groundwater ( 0.7 μeq·L−1). The depletion of Mn2+ is a sensitive marker for freshening because Mn2+ has a strong affinity to the solid phase. Moreover, this study shows that both Mn2+ and Ba2+ can be used as sensitive hydrogeochemical tools to distinguish between salinization and freshening events in the FSI zone in coastal aquifers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language en Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2541 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Russak201635 Serial 197
Permanent link to this record
 

 
Author Satrio, S., Prasetio, R., Hadian, M., Syafri, I.
Title (down) Stable Isotopes and Hydrochemistry Approach for Determining the Salinization Pattern of Shallow Groundwater in Alluvium Deposit Semarang, Central Java Type Journal Article
Year 2016 Publication Indonesian Journal on Geoscience Abbreviated Journal
Volume 4 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 195
Permanent link to this record
 

 
Author Seyedmohammadi*, J.; Esmaeelnejad, L.; Shabanpour, M.
Title (down) Spatial variation modeling of groundwater electrical conductivity using geostatistics and GIS Type Journal Article
Year 2016 Publication Model. Earth Syst. Environ. Abbreviated Journal
Volume 2 Issue Pages 169
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Seyedmohammadi2016 Serial 164
Permanent link to this record
 

 
Author Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R.
Title (down) Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater Type Book Chapter
Year 2016 Publication Integrated Groundwater Management: Concepts, Approaches and Challenges Abbreviated Journal
Volume Issue Pages 377-412
Keywords
Abstract Degradation of the quality of groundwater due to salinization processes is one of the key issues limiting the global dependence on groundwater in aquifers. As the salinization of shallow aquifers is closely related to root-zone salinization, the two must be considered together. This chapter initially describes the physical and chemical processes causing salinization of the root-zone and shallow aquifers, highlighting the dynamics of these processes and how they can be influenced by irrigation and drainage practices, thus illustrating the connectivity between soil and groundwater salinization. The processes leading to aquifer salinization in both inland and coastal areas are discussed. The roles of extractive resource industries, such as mining and coal bed methane operations, in causing aquifer salinization are also outlined. Hydrogeochemical changes occurring during salinization of aquifers are examined with the aid of Piper and Mixing Diagrams. The chapter then illustrates the extent of the problem of groundwater salinization as influenced by management and policy using two case studies. The first is representative of a developing country and explores management of salt-affected soils in the Indus Valley, Pakistan, while the second looks at a developed country, and illustrates how through monitoring we can deduce causes of shallow aquifer salinity in the Namoi Catchment of NSW, Australia. Finally, there is a section on integration and conclusions where we illustrate how management to mitigate salinization needs to be integrated with policy to diminish the threat to productivity that occurs with groundwater degradation.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Cham Editor Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-23576-9 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ Greene2016 Serial 49
Permanent link to this record
 

 
Author Kurunc, A.; Ersahin, S.; Sonmez, N.K.; Kaman, H.; Uz, I.; Uz, B.Y.; Aslan, G.E.
Title (down) Seasonal changes of spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey Type Journal Article
Year 2016 Publication Science of the Total Environment Abbreviated Journal
Volume 554 Issue Pages 53-63
Keywords
Abstract Soil and groundwater degradations have taken considerable attention, recently. We studied spatial and temporal variations of groundwater table depth and contours, and groundwater pH, electrical conductivity (EC), and nitrate (NO3) content in a large irrigated area in Western Mediterranean region of Turkey. These variables were

monitored during 2009 and 2010 in previously constructed 220 monitoring wells. We analyzed the data by geostatistical techniques and GIS. Spatial variation of groundwater table depth (GTD) and groundwater table contours (GTC) remained similar across the four sampling campaigns. The values for groundwater NO3 content, EC, and pH values ranged from 0.01 to 454.1 g L−1 , 0.06 to 46.0 dS m−1 and 6.53–9.91, respectively. Greatest

geostatistical range (16,964 m) occurred for GTC and minimum (960 m) for groundwater EC. Groundwater NO3 concentrations varied both spatially and temporally. Temporal changes in spatial pattern of NO3 indicated that land use and farming practices influenced spatial and temporal variation of groundwater NO3. Several hot spots occurred for groundwater NO3 content and EC. These localities should be monitored more frequently and

land management practices should be adjusted to avoid soil and groundwater degradation. The results may have important implications for areas with similar soil, land use, and climate conditions across the Mediterranean region.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ Kurunc2016 Serial 45
Permanent link to this record