toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R. url  doi
openurl 
  Title (down) Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy Type Journal Article
  Year 2013 Publication Hydrology and Earth System Sciences Abbreviated Journal  
  Volume 17 Issue 7 Pages 2917-2928  
  Keywords salinization, isotopes, Sardinia  
  Abstract Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus Place of Publication Editor  
  Language en Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hess-17-2917-2013 Serial 79  
Permanent link to this record
 

 
Author Russak, A.; Sivan, O.; Yechieli, Y. url  openurl
  Title (down) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers Type Journal Article
  Year 2016 Publication Chemical Geology Abbreviated Journal  
  Volume 441 Issue Pages 35-46  
  Keywords Seawater intrusion, Fresh-saline water interface, Trace metal, Manganese, Lithium, Boron  
  Abstract The current global intrusion of seawater into coastal aquifers causes salinization of groundwater and thus significant degradation of its quality. This study quantified the effect of seawater intrusion and freshening events in coastal aquifers on trace elements (Li, B, Mn and Ba) across the fresh-saline water interface (FSI) and their possible use as indicators for these events. This was done by combining field data and column experiments simulating these events. The experiments enabled quantification of the processes affecting the trace element composition and examination of whether salinization and freshening events are geochemically reversible, which has been seldom investigated. The dominant process affecting trace element composition during salinization and freshening is ion exchange. The results of the experiments show that the concentrations of major cations and Li+ were reversible during salinization and freshening, whereas B, Mn2+ and Ba2+ were not. During salinization, Li+ and B were depleted due to sorption by 10 and 100μmol·L−1, respectively, to about half of their expected conservative concentrations. The relative depletion of Li+ increased with distance from the shore, representing the propagation of salinization. Ba2+ and Mn2+ were desorbed from the sediment during salinization and enriched by tenfold in the aqueous phase compared to their concentration in seawater ( 0.1 μeq·L−1). During freshening both were depleted by almost tenfold compared to their concentration in fresh groundwater ( 0.7 μeq·L−1). The depletion of Mn2+ is a sensitive marker for freshening because Mn2+ has a strong affinity to the solid phase. Moreover, this study shows that both Mn2+ and Ba2+ can be used as sensitive hydrogeochemical tools to distinguish between salinization and freshening events in the FSI zone in coastal aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Russak201635 Serial 197  
Permanent link to this record
 

 
Author Matheron*, G. url  openurl
  Title (down) The theory of regionalized variables and its applications Type Book Whole
  Year 1971 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher École national supérieure des mines Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Centre de Morphologie Mathématique Fontainebleau: Les cahiers du Centre de Morphologie Mathématique de Fontainebleau Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Matheron1971 Serial 158  
Permanent link to this record
 

 
Author Gat, J.R. url  doi
openurl 
  Title (down) The relationship between surface and subsurface waters: water quality aspects in areas of low precipitation / Rapport entre les eaux de surface et les eaux souterraines: aspects des propriétés caractéristiques de l’eau dans les zones à précipitation faible Type Journal Article
  Year 1980 Publication Hydrological Sciences Bulletin Abbreviated Journal  
  Volume 25 Issue 3 Pages 257-267  
  Keywords  
  Abstract In the temperate and semiarid environment the salinity of both surface and subsurface(meteoric) waters is dominated by the weathering products of soil and aquifer minerals, since even surface waters have a history of subsurface flow. In the desert environment, in contrast, surface flows are more superficial and their chemistry dominated by the aeolian salinity. This has both a marine input and

a contribution from recycled salinity from surface accumulation of evaporitic minerals. Both these sources have chloride (and to a lesser extent sulphate) as the dominant anion.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-6936 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Gat1980 Serial 22  
Permanent link to this record
 

 
Author Zhaoyong*, Z.; Abuduwaili, J.; Yimit, H. doi  openurl
  Title (down) The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi Basin, Northwest China Type Journal Article
  Year 2014 Publication PLoS ONE Abbreviated Journal  
  Volume 9(9) Issue Pages 106079  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Zhaoyong2014 Serial 121  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: