toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L. url  doi
openurl 
  Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume (down) 650 Issue Pt 1 Pages 878-890  
  Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay  
  Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.  
  Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30308862 Approved no  
  Call Number THL @ christoph.kuells @ Serial 184  
Permanent link to this record
 

 
Author Russak, A.; Sivan, O.; Yechieli, Y. url  openurl
  Title Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers Type Journal Article
  Year 2016 Publication Chemical Geology Abbreviated Journal  
  Volume (down) 441 Issue Pages 35-46  
  Keywords Seawater intrusion, Fresh-saline water interface, Trace metal, Manganese, Lithium, Boron  
  Abstract The current global intrusion of seawater into coastal aquifers causes salinization of groundwater and thus significant degradation of its quality. This study quantified the effect of seawater intrusion and freshening events in coastal aquifers on trace elements (Li, B, Mn and Ba) across the fresh-saline water interface (FSI) and their possible use as indicators for these events. This was done by combining field data and column experiments simulating these events. The experiments enabled quantification of the processes affecting the trace element composition and examination of whether salinization and freshening events are geochemically reversible, which has been seldom investigated. The dominant process affecting trace element composition during salinization and freshening is ion exchange. The results of the experiments show that the concentrations of major cations and Li+ were reversible during salinization and freshening, whereas B, Mn2+ and Ba2+ were not. During salinization, Li+ and B were depleted due to sorption by 10 and 100μmol·L−1, respectively, to about half of their expected conservative concentrations. The relative depletion of Li+ increased with distance from the shore, representing the propagation of salinization. Ba2+ and Mn2+ were desorbed from the sediment during salinization and enriched by tenfold in the aqueous phase compared to their concentration in seawater ( 0.1 μeq·L−1). During freshening both were depleted by almost tenfold compared to their concentration in fresh groundwater ( 0.7 μeq·L−1). The depletion of Mn2+ is a sensitive marker for freshening because Mn2+ has a strong affinity to the solid phase. Moreover, this study shows that both Mn2+ and Ba2+ can be used as sensitive hydrogeochemical tools to distinguish between salinization and freshening events in the FSI zone in coastal aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Russak201635 Serial 197  
Permanent link to this record
 

 
Author Sarker, M.M.R.; Van Camp, M.; Islam, M.; Ahmed, N.; Walraevens, K. url  doi
openurl 
  Title Hydrochemistry in coastal aquifer of southwest Bangladesh : origin of salinity Type Journal Article
  Year 2018 Publication Environmental Earth Sciences Abbreviated Journal  
  Volume (down) 77 Issue 2 Pages 20  
  Keywords Hydrochemistry,Stable isotope,Seawater intrusion,Coastal aquifer,Bangladesh,DAR-ES-SALAAM,SEAWATER INTRUSION,DELTA PLAIN,GROUNDWATER,DRINKING,TANZANIA,DROUGHT,COMPLEX  
  Abstract In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200-300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1866-6280 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sarker2018 Serial 194  
Permanent link to this record
 

 
Author El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J. url  doi
openurl 
  Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
  Year 2007 Publication Environmental Geology Abbreviated Journal  
  Volume (down) 54 Issue 3 Pages 491-503  
  Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg  
  Abstract The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44  
Permanent link to this record
 

 
Author Lu, C.; Xin, P.; Kong, J.; Li, L.; Luo, J. url  doi
openurl 
  Title Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers Type Journal Article
  Year 2016 Publication Water Resources Research Abbreviated Journal  
  Volume (down) 52 Issue 9 Pages 6989-7004  
  Keywords seawater intrusion, sloping coastal aquifer, analytical solution  
  Abstract Abstract Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Lu.etal.2016 Serial 15  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: