|   | 
Details
   web
Records
Author Sahebjalal, E.
Title Application of geostatistical analysis for evaluatingvariation in groundwater characteristics Type Journal Article
Year 2012 Publication World Appl. Sci. J. Abbreviated Journal
Volume (down) 18 (1) Issue Pages 135-141
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Sahebjalal2012 Serial 129
Permanent link to this record
 

 
Author Carrera*, J.; Hidalgo, J.J.; Slooten, L.J.; Vázquez-Suñé, E.
Title Computational and conceptual issues in the calibration of seawater intrusion models Type Journal Article
Year 2010 Publication Hydrogeol. J. Abbreviated Journal
Volume (down) 18 Issue Pages 131-145
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number CUT @ phaedon.kyriakidis @ Carrera2010 Serial 147
Permanent link to this record
 

 
Author Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.
Title Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy Type Journal Article
Year 2013 Publication Hydrology and Earth System Sciences Abbreviated Journal
Volume (down) 17 Issue 7 Pages 2917-2928
Keywords salinization, isotopes, Sardinia
Abstract Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future.
Address
Corporate Author Thesis
Publisher Copernicus Place of Publication Editor
Language en Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hess-17-2917-2013 Serial 79
Permanent link to this record
 

 
Author Ola, I.; Drebenstedt, C.; Burgess, R.M.; Mensah, M.; Hoth, N.; Külls, C.
Title Remediating Oil Contamination in the Niger Delta Region of Nigeria: Technical Options and Monitoring Strategies Type Journal Article
Year 2024 Publication The Extractive Industries and Society Abbreviated Journal
Volume (down) 17 Issue Pages 101405
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ola2024remediating Serial 224
Permanent link to this record
 

 
Author Park, H.; Schlesinger, W.
Title Global biochemical cycle of boron Type Journal Article
Year 2002 Publication Global Biogeochemical Cycles Abbreviated Journal
Volume (down) 16 Issue Pages 1072
Keywords
Abstract The global Boron (B) cycle is primarily driven by a large flux (1.44 Tg B/yr) through the atmosphere derived from seasalt aerosols. Other significant sources of atmospheric boron include emissions during the combustion of biomass (0.26-0.43 Tg B/yr) and coal, which adds 0.20 Tg B/yr as an anthropogenic contribution. These known inputs to the atmosphere cannot account for the boron removed from the atmosphere during rainfall (3.0 Tg B/yr) and estimated dry deposition (1.3-2.7 Tg B/yr). In addition to atmospheric deposition, rock weathering is a source of boron (0.19 Tg B/yr) for terrestrial ecosystems, and humans mine about 0.31 Tg B/yr from the Earth's crust. More than 4.8 Tg B/yr circulates in the biogeochemical cycle of land plants, and about 0.53-0.63 Tg B/yr is carried from land to sea by rivers. The biogeochemical cycle of boron in the sea includes 4.4 Tg B/yr circulating in the marine biosphere, and an annual loss of 0.47 Tg B/yr to the oceanic crust via a variety of sedimentary processes that collectively remove only a small fraction of the total annual inputs to the oceans. Thus with our current understanding of the global biogeochemistry of B, the atmospheric budget shows outputs > inputs, while the marine compartments show inputs > outputs. Despite these uncertainties, it is clear that the human perturbation of the global B cycle has more than doubled the mobilization of B from the crust and contributes significantly to the B transport in rivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ luqianxue.zhang @ article Serial 94
Permanent link to this record