toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yoon*, S.; Williams, J.R.; Juanes, R.; Kang, P.K. doi  openurl
  Title Maximizing the value of pressure data in saline aquifer characterization Type Journal Article
  Year (down) 2017 Publication Adv. Water Resour. Abbreviated Journal  
  Volume 109 Issue Pages 14-28  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier BV Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Yoon2017 Serial 169  
Permanent link to this record
 

 
Author Hammami Abidi, J.; Farhat, B.; Ben Mammou, A.; Oueslati, N. url  doi
openurl 
  Title Characterization of Recharge Mechanisms and Sources of Groundwater Salinization in Ras Jbel Coastal Aquifer (Northeast Tunisia) Using Hydrogeochemical Tools, Environmental Isotopes, GIS, and Statistics Type Journal Article
  Year (down) 2017 Publication Journal of Chemistry Abbreviated Journal  
  Volume 2017 Issue Pages 8610894  
  Keywords  
  Abstract Groundwater is among the most available water resources in Tunisia; it is a vital natural resource in arid and semiarid regions. Located in north-eastern Tunisia, the Metline-Ras Jbel-Raf Raf aquifer is a mio-plio-quaternary shallow coastal aquifer, where groundwater is the most important source of water supply. The major ion hydrochemistry and environmental isotope composition δ18O, δ2H were investigated to identify the recharge sources and processes that affect the groundwater salinization. The combination of hydrogeochemical, isotopic, statistical, and GIS approaches demonstrates that the salinity and the groundwater composition are largely controlled by the water-rock interaction particularly the dissolution of evaporate minerals and the ion exchange process, the return flow of the irrigation water, agricultural fertilizers, and finally saltwater intrusion which started before 1980 and which is partially mitigated by the artificial recharge since 1993. As for the stable isotope signatures, results showed that groundwater samples lay on and around the local meteoric water line LMWL; hence, this arrangement signifies that the recharge of the Ras Jbel aquifer is ensured by recent recharge from Mediterranean air masses.  
  Address  
  Corporate Author Thesis  
  Publisher Hindawi KW Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2090-9063 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 189  
Permanent link to this record
 

 
Author Lu, C.; Xin, P.; Kong, J.; Li, L.; Luo, J. url  doi
openurl 
  Title Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers Type Journal Article
  Year (down) 2016 Publication Water Resources Research Abbreviated Journal  
  Volume 52 Issue 9 Pages 6989-7004  
  Keywords seawater intrusion, sloping coastal aquifer, analytical solution  
  Abstract Abstract Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Lu.etal.2016 Serial 15  
Permanent link to this record
 

 
Author Llopis-Albert, C.; Merigó, J.M.; Xu, Y. doi  openurl
  Title A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty Type Journal Article
  Year (down) 2016 Publication Journal of Hydrology Abbreviated Journal  
  Volume 540 Issue Pages 774-783  
  Keywords  
  Abstract This paper presents an alternative approach to deal with seawater intrusion problems, that overcomes some of the limitations of previous works, by coupling the well-known SWI2 package for MODFLOW with a stochastic inverse model named GC method. On the one hand, the SWI2 allows a vertically integrated variable-density groundwater flow and seawater intrusion in coastal multi-aquifer systems, and a reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation, which leads to substantial model run-time savings. On the other hand, the GC method allows dealing with groundwater parameter uncertainty by constraining stochastic simulations to flow and mass transport data (i.e., hydraulic conductivity, freshwater heads, saltwater concentrations and travel times) and also to secondary information obtained from expert judgment or geophysical surveys, thus reducing uncertainty and increasing reliability in meeting the environmental standards. The methodology has been successfully applied to a transient movement of the freshwater-seawater interface in response to changing freshwater inflow in a two-aquifer coastal aquifer system, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques. The approach also allows partially overcoming the neglected diffusion and dispersion processes after the conditioning process since the uncertainty is reduced and results are closer to available data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Llopis-Albert2016 Serial 30  
Permanent link to this record
 

 
Author Kurunc, A.; Ersahin, S.; Sonmez, N.K.; Kaman, H.; Uz, I.; Uz, B.Y.; Aslan, G.E. url  doi
openurl 
  Title Seasonal changes of spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey Type Journal Article
  Year (down) 2016 Publication Science of the Total Environment Abbreviated Journal  
  Volume 554 Issue Pages 53-63  
  Keywords  
  Abstract Soil and groundwater degradations have taken considerable attention, recently. We studied spatial and temporal variations of groundwater table depth and contours, and groundwater pH, electrical conductivity (EC), and nitrate (NO3) content in a large irrigated area in Western Mediterranean region of Turkey. These variables were

monitored during 2009 and 2010 in previously constructed 220 monitoring wells. We analyzed the data by geostatistical techniques and GIS. Spatial variation of groundwater table depth (GTD) and groundwater table contours (GTC) remained similar across the four sampling campaigns. The values for groundwater NO3 content, EC, and pH values ranged from 0.01 to 454.1 g L−1 , 0.06 to 46.0 dS m−1 and 6.53–9.91, respectively. Greatest

geostatistical range (16,964 m) occurred for GTC and minimum (960 m) for groundwater EC. Groundwater NO3 concentrations varied both spatially and temporally. Temporal changes in spatial pattern of NO3 indicated that land use and farming practices influenced spatial and temporal variation of groundwater NO3. Several hot spots occurred for groundwater NO3 content and EC. These localities should be monitored more frequently and

land management practices should be adjusted to avoid soil and groundwater degradation. The results may have important implications for areas with similar soil, land use, and climate conditions across the Mediterranean region.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Kurunc2016 Serial 45  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: