toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. url  isbn
openurl 
  Title Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater Type Book Chapter
  Year (down) 2016 Publication Integrated Groundwater Management: Concepts, Approaches and Challenges Abbreviated Journal  
  Volume Issue Pages 377-412  
  Keywords  
  Abstract Degradation of the quality of groundwater due to salinization processes is one of the key issues limiting the global dependence on groundwater in aquifers. As the salinization of shallow aquifers is closely related to root-zone salinization, the two must be considered together. This chapter initially describes the physical and chemical processes causing salinization of the root-zone and shallow aquifers, highlighting the dynamics of these processes and how they can be influenced by irrigation and drainage practices, thus illustrating the connectivity between soil and groundwater salinization. The processes leading to aquifer salinization in both inland and coastal areas are discussed. The roles of extractive resource industries, such as mining and coal bed methane operations, in causing aquifer salinization are also outlined. Hydrogeochemical changes occurring during salinization of aquifers are examined with the aid of Piper and Mixing Diagrams. The chapter then illustrates the extent of the problem of groundwater salinization as influenced by management and policy using two case studies. The first is representative of a developing country and explores management of salt-affected soils in the Indus Valley, Pakistan, while the second looks at a developed country, and illustrates how through monitoring we can deduce causes of shallow aquifer salinity in the Namoi Catchment of NSW, Australia. Finally, there is a section on integration and conclusions where we illustrate how management to mitigate salinization needs to be integrated with policy to diminish the threat to productivity that occurs with groundwater degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-23576-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Greene2016 Serial 49  
Permanent link to this record
 

 
Author Siarkos, I.; Latinopoulos, P. url  doi
openurl 
  Title Modeling seawater intrusion in overexploited aquifers in the absence of sufficient data: application to the aquifer of Nea Moudania, northern Greece Type Journal Article
  Year (down) 2016 Publication Hydrogeology Journal Abbreviated Journal Hydrogeology J.  
  Volume 24 Issue Pages 2123–2141  
  Keywords Groundwater flow, Seawater intrusion, Numerical modeling, Greece, Sensitivity analysis  
  Abstract In many coastal areas, overexploitation of groundwater resources has led both to the quantitative degradation of local aquifers and the deterioration of groundwater quality due to seawater intrusion. To investigate the behavior of coastal aquifers under these conditions, numerical modeling is usually implemented; however, the proper implementation of numerical models requires a large amount of data, which are often not available due to the time-consuming and costly process of obtaining them. In the present study, the investigation of the behavior of coastal aquifers under the lack of adequate data is

attempted by developing a methodological framework consisting of a series of numerical simulations: a steady-state, a false-transient and a transient simulation. The sequence and the connection between these simulations constitute the backbone of the whole procedure aimed at adjusting the various

model parameters, as well as obtaining the initial conditions for the transient simulation. The validity of the proposed methodology is tested through evaluation of the model calibration procedure and the estimation of the simulation errors (mean error, mean absolute error, root mean square error, mean relative error) using the case of Nea Moudania basin, northern Greece. Furthermore, a sensitivity analysis is performed in order to minimize the error estimates and thus to maximize the reliability of the models. The results of the whole procedure affirm the proper implementation of the developed methodology under specific conditions and assumptions due to the lack of sufficient data, while they give a clear picture of the aquifer’s quantitative and qualitative status.
 
  Address Ilias Siarkos: isiarkos@civil.auth.gr; Pericles Latinopoulos latin@civil.auth.gr  
  Corporate Author School of Civil Engineering, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece Thesis  
  Publisher IAH Place of Publication Editor Springer  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-2174 ISBN Medium  
  Area Hydrogeology; groundwater modelling, sea water intrusion Expedition Conference  
  Notes Approved yes  
  Call Number MGRE @ redha.menani @ Serial 52  
Permanent link to this record
 

 
Author Seyedmohammadi*, J.; Esmaeelnejad, L.; Shabanpour, M. doi  openurl
  Title Spatial variation modeling of groundwater electrical conductivity using geostatistics and GIS Type Journal Article
  Year (down) 2016 Publication Model. Earth Syst. Environ. Abbreviated Journal  
  Volume 2 Issue Pages 169  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Seyedmohammadi2016 Serial 164  
Permanent link to this record
 

 
Author Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. url  doi
openurl 
  Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
  Year (down) 2016 Publication Science of The Total Environment Abbreviated Journal  
  Volume 566-567 Issue Pages 398-415  
  Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites  
  Abstract The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181  
Permanent link to this record
 

 
Author Satrio, S., Prasetio, R., Hadian, M., Syafri, I. url  openurl
  Title Stable Isotopes and Hydrochemistry Approach for Determining the Salinization Pattern of Shallow Groundwater in Alluvium Deposit Semarang, Central Java Type Journal Article
  Year (down) 2016 Publication Indonesian Journal on Geoscience Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 195  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: